8 research outputs found

    Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron

    Get PDF
    Strong shock waves create not only plasticity in Fe, but also phase transform the material from its bcc phase to the high-pressure hcp phase. We perform molecular-dynamics simulations of large, 8-million atom nanocrystalline Fe samples to study the interplay between these two mechanisms. We compare results for a potential that describes dislocation generation realistically but excludes phase change with another which in addition faithfully features the bcc → hcp transformation. With increasing shock strength, we find a transition from a two-wave structure (elastic and plastic wave) to a three-wave structure (an additional phase-transformation wave), in agreement with experiment. Our results demonstrate that the phase transformation is preceded by dislocation generation at the grain boundaries (GBs). Plasticity is mostly given by the formation of dislocation loops, which cross the grains and leave behind screw dislocations. We find that the phase transition occurs for a particle velocity between 0.6 and 0.7 km s−1. The phase transition takes only about 10 ps, and the transition time decreases with increasing shock pressure.Fil: Gunkelman, Nina. University of Kaiserlautern; AlemaniaFil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserlautern; Alemani

    EEG phenotypes predict treatment outcome to stimulants in children with ADHD.

    No full text
    This study demonstrates that the EEG phenotypes as described by Johnstone, Gunkelman and Lunt are identifiable EEG patterns with good inter-rater reliability. Furthermore, it was also demonstrated that these EEG phenotypes occurred in both ADHD subjects as well as healthy control subjects. The Frontal Slow and Slowed Alpha Peak Frequency and the Low Voltage EEG phenotype discriminated ADHD subjects best from controls (however the difference was not significant). The Frontal Slow group responded to a stimulant with a clinically relevant decreased number of false negative errors on the CPT. The Frontal Slow and Slowed Alpha Peak Frequency phenotypes have different etiologies as evidenced by the treatment response to stimulants. In previous research Slowed Alpha Peak Frequency has most likely erroneously shown up as a frontal theta sub-group. This implies that future research employing EEG measures in ADHD should avoid using traditional frequency bands, but dissociate Slowed Alpha Peak Frequency from frontal theta by taking the individual alpha peak frequency into account. Furthermore, the divergence from normal of the frequency bands pertaining to the various phenotypes is greater in the clinical group than in the controls. Investigating EEG phenotypes provides a promising new way to approach EEG data, explaining much of the variance in EEGs and thereby potentially leading to more specific prospective treatment outcomes
    corecore