6,303 research outputs found

    Prevalence of obesity and obesity-associated muscle wasting in patients on peritoneal dialysis

    Get PDF
    Background and aims: A progressive decrease in muscle mass until full-blown sarcopenia may occur in patients on peritoneal dialysis (PD) and worsen their life quality and expectancy. Here we investigate the prevalence of obesity and obesity-associated muscle wasting in PD patients. Patients and methods: The study design was observational, cross sectional. Body composition was assessed with BIA and BIVA in 88 PD patients (53.4 ± 13.1 years; 67% male). Patients with obesity and/or with reduced muscle mass were identified using FMI and SM/BW cutoff values, respectively. Inflammatory status was assessed by measuring CRP and fibrinogen blood levels. Results: A total of 44.3% of the patients showed a reduced muscle mass (37.5% moderate and 6.8% severe). The prevalence of obesity was 6.1%, 81.8%, and 100% in patients with normal, moderately, and severely reduced muscle mass, respectively (p < 0.05). Of the total, 15.2% of the patients with normal muscle mass, 18.4% of those with moderately reduced muscle mass, and 66.7% of those with severely reduced muscle mass had diabetes. The prevalence of severe muscle mass loss was higher in those with diabetes than in those without diabetes (22.2% vs. 2.8%, p < 0.05). Patients with obesity-associated muscle wasting showed higher fibrinogen (613.9 ± 155.1 vs. 512.9 ± 159.5 mg/dL, p < 0.05) and CPR (1.4 ± 1.3 vs. 0.6 ± 0.8 mg/dL, p < 0.05) blood concentrations than those with normal body composition. Conclusion: Obesity and diabetes were strongly associated with muscle mass loss in our PD patients. It remains to be established whether prevention of obesity with nutritional interventions can halt the occurrence of muscle mass loss in patients on PD

    Universal amplitude ratios from numerical studies of the three-dimensional O(2) model

    Full text link
    We investigate the three-dimensional O(2) model near the critical point by Monte Carlo simulations and calculate the major universal amplitude ratios of the model. The ratio U_0=A+/A- is determined directly from the specific heat data at zero magnetic field. The data do not, however, allow to extract an accurate estimate for alpha. Instead, we establish a strong correlation of U_0 with the value of alpha used in the fit. This numerical alpha-dependence is given by A+/A- = 1 -4.20(5) alpha + O(alpha^2). For the special alpha-values used in other calculations we find full agreement with the corresponding ratio values, e. g. that of the shuttle experiment with liquid helium. On the critical isochore we obtain the ratio xi+/xi-_T=0.293(9), and on the critical line the ratio xi_T^c/xi_L^c=1.957(10) for the amplitudes of the transverse and longitudinal correlation lengths. These two ratios are independent of the used alpha or nu-values.Comment: 34 pages, 19 Ps-figures, Latex2e, revised version, to be published in J. Phys.

    Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0

    Full text link
    We simulate self-avoiding walks on a cubic lattice and determine the second virial coefficient for walks of different lengths. This allows us to determine the critical value of the renormalized four-point coupling constant in the three-dimensional N-vector universality class for N=0. We obtain g* = 1.4005(5), where g is normalized so that the three-dimensional field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As a byproduct, we also obtain precise estimates of the interpenetration ratio Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page

    Identification of sarcopenia and dynapenia in CKD predialysis patients with EGWSOP2 criteria: An observational, cross-sectional study

    Get PDF
    Objectives: Using the new European Working Group on Sarcopenia in Older People (EWGSOP2) criteria, we identified sarcopenic and dynapenic patients in a cohort of predialysis patients with chronic kidney disease (CKD), and evaluated their clinical and laboratory characteristics. Methods: The study population consisted of 85 (55 men) clinically stable predialysis CKD patients (92.9% in stages 3–5), with a median age of 65.0 (52.5–72.0) y. We classified as sarcopenic the patients with handgrip strength (HGS) and muscle mass both lower than the respective EWGSOP2 cutoff values and as dynapenic those in whom only HGS was less than these reference values. HGS was measured with a hand dynamometer, whereas muscle mass was measured by bioimpedance analysis. Renal function was evaluated as Modification of Diet in Renal Disease estimated glomerular filtration rate. Results: The prevalence of sarcopenia and dynapenia was, respectively, 7.1% and 17.6%. As reported in previous studies, serum albumin and hemoglobin were lower in sarcopenic patients than in patients with preserved muscle mass and strength. However, unlike in these studies, sarcopenia prevalence did not increase with CKD stage, and estimated glomerular filtration rate was similar between groups. Moreover, no difference was identified in any of the aforementioned parameters between dynapenic patients and patients with preserved muscle mass and strength. Conclusions: The EWGSOP2 criteria identified sarcopenia in CKD with a prevalence similar to previous diagnostic criteria. In addition, they found that dynapenia was highly prevalent. Nevertheless, the EWGSOP2 criteria could be better adapted to CKD patients to improve their ability to detect high-risk sarcopenic and dynapenic patients

    Universal Ratios in the 2-D Tricritical Ising Model

    Get PDF
    We consider the universality class of the two-dimensional Tricritical Ising Model. The scaling form of the free-energy naturally leads to the definition of universal ratios of critical amplitudes which may have experimental relevance. We compute these universal ratios by a combined use of results coming from Perturbed Conformal Field Theory, Integrable Quantum Field Theory and numerical methods.Comment: 4 pages, LATEX fil

    Adsorption-like Collapse of Diblock Copolymers

    Full text link
    A linear copolymer made of two reciprocally attracting N-monomer blocks collapses to a compact phase through a novel transition, whose exponents are determined with extensive MC simulations in two and three dimensions. In the former case, an identification with the statistical geometry of suitable percolation paths allows to predict that the number of contacts between the blocks grows like N9/16N^{9/16}. In the compact phase the blocks are mixed and, in two dimensions, also zipped, in such a way to form a spiral, double chain structure.Comment: 4 pages, 5 Postscript figure

    On the Dominance of Trivial Knots among SAPs on a Cubic Lattice

    Full text link
    The knotting probability is defined by the probability with which an NN-step self-avoiding polygon (SAP) with a fixed type of knot appears in the configuration space. We evaluate these probabilities for some knot types on a simple cubic lattice. For the trivial knot, we find that the knotting probability decays much slower for the SAP on the cubic lattice than for continuum models of the SAP as a function of NN. In particular the characteristic length of the trivial knot that corresponds to a `half-life' of the knotting probability is estimated to be 2.5×1052.5 \times 10^5 on the cubic lattice.Comment: LaTeX2e, 21 pages, 8 figur

    Scaling Limit of the Ising Model in a Field

    Get PDF
    The dilute A_3 model is a solvable IRF (interaction round a face) model with three local states and adjacency conditions encoded by the Dynkin diagram of the Lie algebra A_3. It can be regarded as a solvable version of an Ising model at the critical temperature in a magnetic field. One therefore expects the scaling limit to be governed by Zamolodchikov's integrable perturbation of the c=1/2 conformal field theory. Indeed, a recent thermodynamic Bethe Ansatz approach succeeded to unveil the corresponding E_8 structure under certain assumptions on the nature of the Bethe Ansatz solutions. In order to check these conjectures, we perform a detailed numerical investigation of the solutions of the Bethe Ansatz equations for the critical and off-critical model. Scaling functions for the ground-state corrections and for the lowest spectral gaps are obtained, which give very precise numerical results for the lowest mass ratios in the massive scaling limit. While these agree perfectly with the E_8 mass ratios, we observe one state which seems to violate the assumptions underlying the thermodynamic Bethe Ansatz calculation. We also analyze the critical spectrum of the dilute A_3 model, which exhibits massive excitations on top of the massless states of the Ising conformal field theory.Comment: 29 pages, RevTeX, 11 PostScript figures included by epsf, using amssymb.sty (v2.2

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Optimization of the derivative expansion in the nonperturbative renormalization group

    Get PDF
    We study the optimization of nonperturbative renormalization group equations truncated both in fields and derivatives. On the example of the Ising model in three dimensions, we show that the Principle of Minimal Sensitivity can be unambiguously implemented at order ∂2\partial^2 of the derivative expansion. This approach allows us to select optimized cut-off functions and to improve the accuracy of the critical exponents Îœ\nu and η\eta. The convergence of the field expansion is also analyzed. We show in particular that its optimization does not coincide with optimization of the accuracy of the critical exponents.Comment: 13 pages, 9 PS figures, published versio
    • 

    corecore