22 research outputs found

    Efficient room-temperature light-emitters based on partly amorphised Ge quantum dots in crystalline Si

    Full text link
    Semiconductor light emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices 1-3. Light sources based on group-IV elements would be SIT compatible but suffer from the poor optoelectronic properties of bulk Si and Ge. Here, we demonstrate that epitaxially grown Ge quantum dots (QDs) in a fully coherent Si matrix show extraordinary optical properties if partially amorphised by Ge-ion bombardment (GIB). The GIB-QDs exhibit a quasi-direct-band gap and show, in contrast to conventional SiGe nanostructures, almost no thermal quenching of the photoluminescence (PL) up to room-temperature (RT). Microdisk resonators with embedded GIB-QDs exhibit threshold-behaviour and super-linear increase of the integrated PL-intensity (IPL) with increasing excitation power Pexc which indicates light amplification by stimulated emission in a fully SIT-compatible group-IV nano-system

    Excitation Intensity Driven PL Shifts of SiGe Islands on Patterned and Planar Si(001) Substrates: Evidence for Ge-rich Dots in Islands

    Get PDF
    For randomly nucleated SiGe/Si(001) islands, a significantly stronger blue-shift of the PL spectra as a function of the excitation intensity is observed when compared to islands grown on patterned substrates side by side within the same run in a solid source molecular beam epitaxy chamber. We ascribe this different PL behavior to the much larger inhomogeneity of the Ge distribution in islands on planar substrates when compared to islands grown on pit-patterned ones, as observed previously. 3D band-structure calculations show that Ge-rich inclusions of approximately 5 nm diameter at the apex of the islands can account for the observed differences in the PL spectra. The existence of such inclusions can be regarded as a quantum dot in an island and is in agreement with recent nano-tomography experiments

    Ultra-steep side facets in multi-faceted SiGe/Si(001) Stranski-Krastanow islands

    Get PDF
    For the prototypical Ge/Si(001) system, we show that at high growth temperature a new type of Stranski-Krastanow islands is formed with side facets steeper than {111} and high aspect ratio. Nano-goniometric analysis of the island shapes reveals the presence of six new facet groups in addition to those previously found for dome or barn-shaped islands. Due to the highly multi-faceted island shape and high aspect ratio, the new island types are named "cupola" islands and their steepest {12 5 3} side facet is inclined by 68°to the substrate surface. Assessing the relative stability of the new facets from surface area analysis, we find that their stability is similar to that of {113} and {15 3 23} facets of dome islands. The comparison of the different island shapes shows that they form a hierarchical class of geometrical structures, in which the lower aspect ratio islands of barns, domes and pyramids are directly derived from the cupola islands by successive truncation of the pedestal bases without facet rearrangements. The results underline the key role of surface faceting in the process of island formation, which is as crucial for understanding the island's growth evolution as it is important for device applications

    In situ Control of Si/Ge Growth on Stripe-Patterned Substrates Using Reflection High-Energy Electron Diffraction and Scanning Tunneling Microscopy

    Get PDF
    Si and Ge growth on the stripe-patterned Si (001) substrates is studied using in situ reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). During Si buffer growth, the evolution of RHEED patterns reveals a rapid change of the stripe morphology from a multifaceted “U” to a single-faceted “V” geometry with {119} sidewall facets. This allows to control the pattern morphology and to stop Si buffer growth once a well-defined stripe geometry is formed. Subsequent Ge growth on “V”-shaped stripes was performed at two different temperatures of 520 and 600°C. At low temperature of 520°C, pronounced sidewall ripples are formed at a critical coverage of 4.1 monolayers as revealed by the appearance of splitted diffraction streaks in RHEED. At 600°C, the ripple onset is shifted toward higher coverages, and at 5.2 monolayers dome islands are formed at the bottom of the stripes. These observations are in excellent agreement with STM images recorded at different Ge coverages. Therefore, RHEED is an efficient tool for in situ control of the growth process on stripe-patterned substrate templates. The comparison of the results obtained at different temperature reveals the importance of kinetics on the island formation process on patterned substrates

    Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

    No full text
    A process for integrating SiGe quantum well infrared photodetectors (QWIPs) grown on SOI substrates into a vertical cavity resonator has been developed. The process is based on a low temperature (T < 250°C) etch mask deposition and, therefore, is applicable for novel QWIP structures grown by low temperature Si MBE
    corecore