68 research outputs found

    A variational algorithm for the detection of line segments

    Get PDF
    In this paper we propose an algorithm for the detection of edges in images that is based on topological asymptotic analysis. Motivated from the Mumford--Shah functional, we consider a variational functional that penalizes oscillations outside some approximate edge set, which we represent as the union of a finite number of thin strips, the width of which is an order of magnitude smaller than their length. In order to find a near optimal placement of these strips, we compute an asymptotic expansion of the functional with respect to the strip size. This expansion is then employed for defining a (topological) gradient descent like minimization method. As opposed to a recently proposed method by some of the authors, which uses coverings with balls, the usage of strips includes some directional information into the method, which can be used for obtaining finer edges and can also result in a reduction of computation times

    Regularization of Linear Ill-posed Problems by the Augmented Lagrangian Method and Variational Inequalities

    Full text link
    We study the application of the Augmented Lagrangian Method to the solution of linear ill-posed problems. Previously, linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition. Using the method of variational inequalities, we extend these results in this paper to convergence rates of lower order, both for the case of an a priori parameter choice and an a posteriori choice based on Morozov's discrepancy principle. In addition, our approach allows the derivation of convergence rates with respect to distance measures different from the Bregman distance. As a particular application, we consider sparsity promoting regularization, where we derive a range of convergence rates with respect to the norm under the assumption of restricted injectivity in conjunction with generalized source conditions of H\"older type

    Nonparametric instrumental regression with non-convex constraints

    Full text link
    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, like integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

    Full text link
    In this paper we study a Tikhonov-type method for ill-posed nonlinear operator equations \gdag = F( ag) where \gdag is an integrable, non-negative function. We assume that data are drawn from a Poisson process with density t\gdag where t>0t>0 may be interpreted as an exposure time. Such problems occur in many photonic imaging applications including positron emission tomography, confocal fluorescence microscopy, astronomic observations, and phase retrieval problems in optics. Our approach uses a Kullback-Leibler-type data fidelity functional and allows for general convex penalty terms. We prove convergence rates of the expectation of the reconstruction error under a variational source condition as t→∞t\to\infty both for an a priori and for a Lepski{\u\i}-type parameter choice rule

    Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints

    Full text link
    The Tikhonov regularization of linear ill-posed problems with an ℓ1\ell^1 penalty is considered. We recall results for linear convergence rates and results on exact recovery of the support. Moreover, we derive conditions for exact support recovery which are especially applicable in the case of ill-posed problems, where other conditions, e.g. based on the so-called coherence or the restricted isometry property are usually not applicable. The obtained results also show that the regularized solutions do not only converge in the ℓ1\ell^1-norm but also in the vector space ℓ0\ell^0 (when considered as the strict inductive limit of the spaces Rn\R^n as nn tends to infinity). Additionally, the relations between different conditions for exact support recovery and linear convergence rates are investigated. With an imaging example from digital holography the applicability of the obtained results is illustrated, i.e. that one may check a priori if the experimental setup guarantees exact recovery with Tikhonov regularization with sparsity constraints

    Necessary and sufficient conditions of solution uniqueness in ℓ1\ell_1 minimization

    Full text link
    This paper shows that the solutions to various convex ℓ1\ell_1 minimization problems are \emph{unique} if and only if a common set of conditions are satisfied. This result applies broadly to the basis pursuit model, basis pursuit denoising model, Lasso model, as well as other ℓ1\ell_1 models that either minimize f(Ax−b)f(Ax-b) or impose the constraint f(Ax−b)≀σf(Ax-b)\leq\sigma, where ff is a strictly convex function. For these models, this paper proves that, given a solution x∗x^* and defining I=\supp(x^*) and s=\sign(x^*_I), x∗x^* is the unique solution if and only if AIA_I has full column rank and there exists yy such that AITy=sA_I^Ty=s and ∣aiTy∣∞<1|a_i^Ty|_\infty<1 for i∈̞Ii\not\in I. This condition is previously known to be sufficient for the basis pursuit model to have a unique solution supported on II. Indeed, it is also necessary, and applies to a variety of other ℓ1\ell_1 models. The paper also discusses ways to recognize unique solutions and verify the uniqueness conditions numerically.Comment: 6 pages; revised version; submitte

    Discretization of variational regularization in Banach spaces

    Full text link
    Consider a nonlinear ill-posed operator equation F(u)=yF(u)=y where FF is defined on a Banach space XX. In general, for solving this equation numerically, a finite dimensional approximation of XX and an approximation of FF are required. Moreover, in general the given data \yd of yy are noisy. In this paper we analyze finite dimensional variational regularization, which takes into account operator approximations and noisy data: We show (semi-)convergence of the regularized solution of the finite dimensional problems and establish convergence rates in terms of Bregman distances under appropriate sourcewise representation of a solution of the equation. The more involved case of regularization in nonseparable Banach spaces is discussed in detail. In particular we consider the space of finite total variation functions, the space of functions of finite bounded deformation, and the L∞L^\infty--space
    • 

    corecore