14 research outputs found

    Improved jet noise modeling using a new acoustic time scale

    No full text
    To calculate the noise emanating from a turbulent flow (such as a jet flow) using Lighthill's analogy, knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales and convection velocities are needed. However, if we are using a RANS calculation then we obtain only steady characteristics of the flow and it is then necessary to model the unsteady behaviour in some way. While there has been considerable attention given to the correct way to model the form of the correlation tensor (or equivalently the spectral density), less attention has been given to underlying physics that dictate the proper choice of timescale. In early studies various authors tended to assume that the acoustic timescale was proportional to the turbulent dissipation rate but later studies have revealed that a frequency dependent relationship gives better results. In this paper we recognise that there are several time dependent processes occurring within a turbulent flow and propose a new way of defining an acoustic timescale. An isothermal single-flow M0.75 jet has been chosen for the present study and essential fluid dynamic information and turbulent parameters have been obtained using a modified k-ε method. The jet noise prediction at 90 deg is found using Lighthill's analogy and directivity is estimated using an asymptotic solution of Lilley's formulation. Predictions reveal good agreement between the noise predictions and observations. Furthermore, the new time-scale has an inherent frequency dependency that arises naturally from the underlying physics thus avoiding supplementary mathematical enhancements to the model

    Incorporation of Caseinoglycomacropeptide and Caseinophosphopeptide into the Salivary Pellicle Inhibits Adherence of Mutans Streptococci

    No full text
    The protective effects of milk and milk products against dental caries have been demonstrated in many animal studies. We have shown that this effect was mediated by micellar casein or caseinopeptide derivatives. A reduction in the Streptococcus sobrinus population in the oral microbiota of animals fed diets supplemented with these milk components was consistently observed. A possible explanation for these findings is that milk components are incorporated into the salivary pellicle, thereby reducing the adherence of S. sobrinus. This hypothesis was tested in vitro by the incubation of bovine enamel discs with unstimulated saliva. The resulting pellicle was washed and incubated with caseinoglycomacropeptide (CGMP) and/or caseinophosphopeptide (CPP) labeled with 17- and 12-nm gold particles. All samples were prepared for electron microscopy by high-pressure freezing followed by freeze-substitution. It was demonstrated by high-resolution scanning electron microscopy with back-scattered electron imaging, as well as by transmission electron microscopy, that both peptides were incorporated into the pellicle in exchange for albumin, confirming previous findings. This protein was identified with a mouse anti-human serum albumin followed by goat anti-mouse IgG labeled with 25-nm gold particles. Incorporation of CGMP and/or CPP into salivary pellicles reduced the adherence of both S. sobrinus and S. mutans significantly. It is suggested that the calcium-and phosphate-rich micellar casein or caseinopeptides are incorporated into the pellicle. The resulting ecological shifts, together with the increased remineralization potential of this biofilm, may explain its modified cariogenic potential.</p

    Prediction of the flow-induced noise for practical applications using the SNGR method

    No full text
    In this paper an engineering method for the prediction of noise generated by a turbulent flow is presented. The presented approach is based on the assumption that the acoustic phenomena do not provide feedback to the turbulence. Thus, parameters such as the turbulent kinetic energy and the integral length scale can be obtained from Reynolds Averaged Navier Stokes (RANS) simulations. Subsequently an SNGR approach is employed for generating an unsteady turbulent velocity distribution that possesses these turbulent characteristic values. Since the propagation of sound is little influenced by turbulent and viscous effects it can be described by the Euler equations. These Euler equations are solved on an unstructured grid, allowing for arbitrarily complex geometries. Results of simulations employing this Computational Aero Acoustics approach for several applications are compared with measurements, showing good agreement

    Carbohydrate-controlled serine protease inhibitor (serpin) production in Bifidobacterium longum subsp. longum

    No full text
    The Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that Bifidobacterium longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.</p

    Aeroacoustic power generated by multiple compact axisymmetric cavities: effect of hydrodynamic interference on the sound production

    Get PDF
    Aeroacoustic sound generation due to self-sustained oscillations by a series of compact axisymmetric cavities exposed to a grazing flow is studied both experimentally and numerically. The driving feedback is produced by the velocity fluctuations resulting from a coupling of vortex sheddings at the upstream cavity edges with acoustic standing waves in the coaxial pipe. When the cavities are separated sufficiently from each other, the whistling behavior of the complete system can be determined from the individual contribution of each cavity. When the cavities are placed close to each other there is a strong hydrodynamic interference between the cavities which affects both the peak amplitude attained during whistling and the corresponding Strouhal number. This hydrodynamic interference is captured successfully by the proposed numerical method

    Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci.

    Full text link
    The protective effects of milk and milk products against dental caries have been demonstrated in many animal studies. We have shown that this effect was mediated by micellar casein or caseinopeptide derivatives. A reduction in the Streptococcus sobrinus population in the oral microbiota of animals fed diets supplemented with these milk components was consistently observed. A possible explanation for these findings is that milk components are incorporated into the salivary pellicle, thereby reducing the adherence of S. sobrinus. This hypothesis was tested in vitro by the incubation of bovine enamel discs with unstimulated saliva. The resulting pellicle was washed and incubated with caseinoglycomacropeptide (CGMP) and/or caseinophosphopeptide (CPP) labeled with 17- and 12-nm gold particles. All samples were prepared for electron microscopy by high-pressure freezing followed by freeze-substitution. It was demonstrated by high-resolution scanning electron microscopy with back-scattered electron imaging, as well as by transmission electron microscopy, that both peptides were incorporated into the pellicle in exchange for albumin, confirming previous findings. This protein was identified with a mouse anti-human serum albumin followed by goat anti-mouse IgG labeled with 25-nm gold particles. Incorporation of CGMP and/or CPP into salivary pellicles reduced the adherence of both S. sobrinus and S. mutans significantly. It is suggested that the calcium and phosphate-rich micellar casein or caseinopeptides are incorporated into the pellicle. The resulting ecological shifts, together with the increased remineralization potential of this biofilm, may explain its modified cariogenic potential
    corecore