905 research outputs found

    Dependence of ground state energy of classical n-vector spins on n

    Full text link
    We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - \sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show that this bound is the best possible. We also derive an upper bound for E_G(m) in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the system, as measured by F(n), which is defined to be (\sum_{i>j} |J_ij| + E_G(n)) / (\sum_{i>j} |J_ij|). We describe a procedure for constructing a set of J_ij's such that an arbitrary given state, {S_i}, is the ground state.Comment: 6 pages, 2 figures, submitted to Physical Review

    A hybrid constraint programming and semidefinite programming approach for the stable set problem

    Full text link
    This work presents a hybrid approach to solve the maximum stable set problem, using constraint and semidefinite programming. The approach consists of two steps: subproblem generation and subproblem solution. First we rank the variable domain values, based on the solution of a semidefinite relaxation. Using this ranking, we generate the most promising subproblems first, by exploring a search tree using a limited discrepancy strategy. Then the subproblems are being solved using a constraint programming solver. To strengthen the semidefinite relaxation, we propose to infer additional constraints from the discrepancy structure. Computational results show that the semidefinite relaxation is very informative, since solutions of good quality are found in the first subproblems, or optimality is proven immediately.Comment: 14 page

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Improved Algorithm for Degree Bounded Survivable Network Design Problem

    Full text link
    We consider the Degree-Bounded Survivable Network Design Problem: the objective is to find a minimum cost subgraph satisfying the given connectivity requirements as well as the degree bounds on the vertices. If we denote the upper bound on the degree of a vertex v by b(v), then we present an algorithm that finds a solution whose cost is at most twice the cost of the optimal solution while the degree of a degree constrained vertex v is at most 2b(v) + 2. This improves upon the results of Lau and Singh and that of Lau, Naor, Salavatipour and Singh

    Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities

    Full text link
    Quantum theory imposes a strict limit on the strength of non-local correlations. It only allows for a violation of the CHSH inequality up to the value 2 sqrt(2), known as Tsirelson's bound. In this note, we consider generalized CHSH inequalities based on many measurement settings with two possible measurement outcomes each. We demonstrate how to prove Tsirelson bounds for any such generalized CHSH inequality using semidefinite programming. As an example, we show that for any shared entangled state and observables X_1,...,X_n and Y_1,...,Y_n with eigenvalues +/- 1 we have | + <X_2 Y_1> + + + ... + - | <= 2 n cos(pi/(2n)). It is well known that there exist observables such that equality can be achieved. However, we show that these are indeed optimal. Our approach can easily be generalized to other inequalities for such observables.Comment: 9 pages, LateX, V2: Updated reference [3]. To appear in Physical Review

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    Improved Approximation for Tree Augmentation: Saving by Rewiring

    Full text link
    The Tree Augmentation Problem (TAP) is a fundamental network design problem in which we are given a tree and a set of additional edges, also called \emph{links}. The task is to find a set of links, of minimum size, whose addition to the tree leads to a 22-edge-connected graph. A long line of results on TAP culminated in the previously best known approximation guarantee of 1.51.5 achieved by a combinatorial approach due to Kortsarz and Nutov [ACM Transactions on Algorithms 2016], and also by an SDP-based approach by Cheriyan and Gao [Algorithmica 2017]. Moreover, an elegant LP-based (1.5+ϵ)(1.5+\epsilon)-approximation has also been found very recently by Fiorini, Gro\ss, K\"onemann, and Sanit\'a [SODA 2018]. In this paper, we show that an approximation factor below 1.51.5 can be achieved, by presenting a 1.4581.458-approximation that is based on several new techniques

    The Lazy Bureaucrat Scheduling Problem

    Full text link
    We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine'') who performs the tasks. A typical worker's objective is to minimize the amount of work he does (he is ``lazy''), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse'' scheduling problems, which we denote ``Lazy Bureaucrat Problems,'' gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.Comment: 19 pages, 2 figures, Latex. To appear, Information and Computatio

    Physical accessible transformations on a finite number of quantum states

    Get PDF
    We consider to treat the usual probabilistic cloning, state separation, unambiguous state discrimination, \emph{etc} in a uniform framework. All these transformations can be regarded as special examples of generalized completely positive trace non-increasing maps on a finite number of input states. From the system-ancilla model we construct the corresponding unitary implementation of pure →\to pure, pure →\to mixed, mixed →\to pure, and mixed →\to mixed states transformations in the whole system and obtain the necessary and sufficient conditions on the existence of the desired maps. We expect our work will be helpful to explore what we can do on a finite set of input states.Comment: 7 page

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S ⊆\subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201
    • …
    corecore