1,079 research outputs found
Temporal modulation transfer functions in the European Starling (Sturnus vulgaris): II. Responses of auditory-nerve fibres
The temporal resolution of cochlear-nerve fibres in the European starling was determined with sinusoidally amplitude-modulated noise stimuli similar to those previously used in a psychoacoustic study in this species (Klump and Okanoya, 1991). Temporal modulation transfer curves (TMTFs) were constructed for cochlear afferents allowing a direct comparison with the starling's behavioural performance. On average, the neuron's detection of modulation was less sensitive than that obtained in the behavioural experiments, although the most sensitive cells approached the values determined psychophysically. The shapes of the neural TMTFs generally resembled low-pass or band-pass filter functions, and the shapes of the averaged neural functions were very similar to those obtained in the behavioural study for two different types of stimuli (gated and continuous carrier). Minimum integration times calculated from the upper cut-off frequency of the neural TMTFs had a median of 0.97 ms with a range of 0.25 to 15.9 ms. The relations between the minimum integration times and the tuning characteristics of the cells (tuning curve bandwidth, Q10 dB-value, high- and low-frequency slopes of the tuning curves) are discussed. Finally, we compare the TMTF data recorded in the starling auditory nerve with data from neurophysiological and behavioural observations on temporal resolution using other experimental paradigms in this and other vertebrate species
Moment-based parameter estimation in binomial random intersection graph models
Binomial random intersection graphs can be used as parsimonious statistical
models of large and sparse networks, with one parameter for the average degree
and another for transitivity, the tendency of neighbours of a node to be
connected. This paper discusses the estimation of these parameters from a
single observed instance of the graph, using moment estimators based on
observed degrees and frequencies of 2-stars and triangles. The observed data
set is assumed to be a subgraph induced by a set of nodes sampled from
the full set of nodes. We prove the consistency of the proposed estimators
by showing that the relative estimation error is small with high probability
for . As a byproduct, our analysis confirms that the
empirical transitivity coefficient of the graph is with high probability close
to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure
TRAIP is a regulator of the spindle assembly checkpoint.
Accurate chromosome segregation during mitosis is temporally and spatially coordinated by fidelity-monitoring checkpoint systems. Deficiencies in these checkpoint systems can lead to chromosome segregation errors and aneuploidy, and promote tumorigenesis. Here, we report that the TRAF-interacting protein (TRAIP), a ubiquitously expressed nucleolar E3 ubiquitin ligase important for cellular proliferation, is localized close to mitotic chromosomes. Its knockdown in HeLa cells by RNA interference (RNAi) decreased the time of early mitosis progression from nuclear envelope breakdown (NEB) to anaphase onset and increased the percentages of chromosome alignment defects in metaphase and lagging chromosomes in anaphase compared with those of control cells. The decrease in progression time was corrected by the expression of wild-type but not a ubiquitin-ligase-deficient form of TRAIP. TRAIP-depleted cells bypassed taxol-induced mitotic arrest and displayed significantly reduced kinetochore levels of MAD2 (also known as MAD2L1) but not of other spindle checkpoint proteins in the presence of nocodazole. These results imply that TRAIP regulates the spindle assembly checkpoint, MAD2 abundance at kinetochores and the accurate cellular distribution of chromosomes. The TRAIP ubiquitin ligase activity is functionally required for the spindle assembly checkpoint control
Combining high strength and moderate ductility in wear resistant coatings: a MO2BC study
Wear resistant coatings employed in cutting and forming applications usually require the combination of high stiffness and high hardness, as these properties often enable low wear rates. Moreover, moderate ductility is often desirable as crack formation can lead to early service failure. Traditionally, the combination of high stiffness and high ductility has been considered as self-excluding. However, recent investigations based on correlative experimental and theoretical research suggest that this empirical relationship can be overcome by a new generation of hard coating materials.
For example, ab initio calculations have predicted Mo2BC to exhibit a high stiffness in combination with moderate ductility [1]. The material crystallizes in an orthorhombic structure (space group Cmcm), in which B atoms are positioned in Mo6B trigonal prisms and C atoms are at Mo6C octahedral sites in alternating sequence (unit cell is shown in Fig. 1a). The calculated bulk modulus of 324 GPa for Mo2BC surpasses the one of Ti0.75Al0.25N (178 GPa) [2], often referred as benchmark coating, by more than 50%. In addition, Mo2BC has been also predicted to be moderately ductile based on its ratio of bulk to shear moduli (B/G) and the calculated positive Cauchy pressure [3].
Please click Additional Files below to see the full abstract
Blood and cerebrospinal fluid biomarker changes in patients with HIV-associated neurocognitive impairment treated with lithium: analysis from a randomised placebo-controlled trial
HIV-associated neurocognitive disorders (HAND) persist in the era of antiretroviral therapy (ART). Thus, ART does not completely halt or reverse the pathological processes behind HAND. Adjuvant mitigating treatments are, therefore, prudent. Lithium treatment is known to promote neuronal brain–derived neurotrophic factors (BDNF). Lithium is also an inhibitor of glycogen synthase kinase-3 beta (GSK-3-β). We analyzed biomarkers obtained from participants in a randomized placebo-controlled trial of lithium in ART-treated individuals with moderate or severe HAND. We assayed markers at baseline and 24 weeks across several pathways hypothesized to be affected by HIV, inflammation, or degeneration. Investigated biomarkers included dopamine, BDNF, neurofilament light chain, and CD8 + lymphocyte activation (CD38 + HLADR +). Alzheimer’s Disease (AD) biomarkers included soluble amyloid precursor protein alpha and beta (sAPPα/β), Aβ38, 40, 42, and ten other biomarkers validated as predictors of mild cognitive impairment and progression in previous studies. These include apolipoprotein C3, pre-albumin, α1-acid glycoprotein, α1-antitrypsin, PEDF, CC4, ICAM-1, RANTES, clusterin, and cystatin c. We recruited 61 participants (placebo = 31; lithium = 30). The age baseline mean was 40 (± 8.35) years and the median CD4 + T-cell count was 498 (IQR: 389–651) cells/μL. Biomarker concentrations between groups did not differ at baseline. However, both groups’ blood dopamine levels decreased significantly after 24 weeks (adj. p < 002). No other marker was significantly different between groups, and we concluded that lithium did not confer neuroprotection following 24 weeks of treatment. However, the study was limited in duration and sample size
Tissue eosinophilia induced by recombinant human interleukin-5 in the hamster cheek pouch membrane
Interleukin-5 (IL-5) is a cytokine that preferentially effects the development and function of eosinophils, and is considered important in the pathophysiology of allergic inflammation. In this study, we evaluated the ability of recombinant human IL-5 (rHu IL-5) to promote tissue eosinophilia and the importance of this eosinophilia to pathological alterations in vascular function. Repetitive subcutaneous administration for 18 days of rHu IL-5 resulted in a 7-fold increase in the number of eosinophils found in the ipsilateral hamster cheek pouch membrane. The contralateral cheek pouch membrane and peritoneum of these animals showed lesser but significant elevations in the number of eosinophils. In contrast, denatured rHu IL-5 did not elevate eosinophils in these tissues. Through the use of intravital microscopy and fluorometric analysis, rHu IL-5 treated hamster cheek pouch membranes were evaluated for alterations in microvascular permeability, using plasma clearance of FITC-dextran 150 as an index. Despite promoting a prominent tissue eosinophilia, the repetitive subcutaneous injections of rHu IL-5 did not alter the clearance of FITC-dextran 150. Topical application of rHu IL-5 to the cheek pouch, also, had no effect on the clearance of FITC-dextran 150. Immunofluorescence observations using an antibody to the granule protein, eosinophil peroxidase, indicated that the recruited cells had not degranulated. Our results support the importance of IL-5 in the recruitment of tissue eosinophils, but further stimulation is probably required to cause degranulation of these cells and the ensuing tissue damage
Ontology-Based Support for Security Requirements Specification Process
The security requirements specification (SRS) is an integral aspect of the development of secured information systems and entails the formal documentation of the security needs of a system in a correct and consistent way.
However, in many cases there is lack of sufficiently experienced security experts or security requirements (SR) engineer within an organization, which limits the quality of SR that are specified. This paper presents an approach that
leverages ontologies and requirements boilerplates in order to alleviate the effect of lack of highly experienced personnel for SRS. It also offers a credible starting point for the SRS process. A preliminary evaluation of the tool prototype – ReqSec tool - was used to demonstrate the approach and to confirm its usability to support the SRS process. The tool helps to reduce the amount of effort required, stimulate discovery of latent security threats, and enables the specification of good quality SR
- …