4,828 research outputs found
Using Technology as a Vehicle to Appropriately Integrate Mathematics and Science Instruction for the Middle School
At the College of William and Mary, pre-service middle school science and mathematics teachers enroll in their respective methods courses taught in the same time period. Both instructors emphasize the importance of the content pedagogy unique to their disciplines in their individual courses such as strategies for teaching problem solving, computation, proportional reasoning, algebraic and geometric thinking in mathematics, and strategies for teaching students how to investigate or design and conduct experiments in science. However, the two classes come together for sessions in which they examine the relationship of the two disciplines and the proper role of technology, both graphing calculator and computer, in their instruction Starting with resources such as Science in Seconds for Kids by Jean Potter [1], the science students collaborate with the math students to design and conduct brief experiments. The data generated is analyzed using spreadsheets and later graphing calculators. Various classes of mathematical curves are examined using data generated by sensors/probes and CBLs. Through this experience the pre-service teachers learn to work collaboratively with their colleagues on meaningful tasks, strengthening the effectiveness of all participants
Experimental Design at the Intersection of Mathematics, Science, and Technology in Grades K-6
Interdisciplinary courses, highlighting as they do the area(s) the disciplines have in common, often give the misperception of a single body of knowledge and/or way of knowing. However, discipline based courses often leave the equally mistaken notion that the disciplines have nothing in common. The task of the methods courses described in this paper is to reach an appropriate balance so that our pre-service elementary (K-6) teachers have a realistic perception of the independence and interdependence of mathematics and science. At the College of William and Mary each cohort of pre-service elementary teachers enrolls in mathematics and science methods courses taught in consecutive hours. Both instructors emphasize the importance of the content pedagogy unique to their disciplines such as strategies for teaching problem solving, computation, algebraic thinking, and proportional reasoning in mathematics and strategies for teaching students how to investigate and understand the concepts of science. The instructors model interdisciplinary instruction by collaboratively teaching common content pedagogy such as the use of technology, data analysis, and interpretation. Students also identify real-life application of the mathematical principles they are learning that can be applied to science. The concept of simultaneously teaching appropriately selected math and science skills are stressed. Given this approach students are not left with the notion that mathematics is the handmaid of science nor the notion that it is the queen of the sciences. Rather, they view mathematics as a co-equal partner
Supramolecular modification of ABC triblock terpolymers in confinement assembly
The self-assembly of AB diblock copolymers in three-dimensional (3D) soft confinement of nanoemulsions has recently become an attractive bottom up route to prepare colloids with controlled inner morphologies. In that regard, ABC triblock terpolymers show a more complex morphological behavior and could thus give access to extensive libraries of multicompartment microparticles. However, knowledge about their self-assembly in confinement is very limited thus far. Here, we investigated the confinement assembly of polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) triblock terpolymers in nanoemulsion droplets. Depending on the block weight fractions, we found spherical microparticles with concentric lamella–sphere (ls) morphology, i.e., PS/PT lamella intercalated with P4VP spheres, or unusual conic microparticles with concentric lamella–cylinder (lc) morphology. We further described how these morphologies can be modified through supramolecular additives, such as hydrogen bond (HB) and halogen bond (XB) donors. We bound donors to the 4VP units and analyzed changes in the morphology depending on the binding strength and the length of the alkyl tail. The interaction with the weaker donors resulted in an increase in volume of the P4VP domains, which depends upon the molar fraction of the added donor. For donors with a high tendency of intermolecular packing, a visible change in the morphology was observed. This ultimately caused a shape change in the microparticle. Knowledge about how to control inner morphologies of multicompartment microparticles could lead to novel carbon supports for catalysis, nanoparticles with unprecedented topologies, and potentially, reversible shape changes by light actuation
Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial
Background: The 22q13 deletion syndrome (Phelan–
McDermid syndrome) is characterised by a global
developmental delay, absent or delayed speech, generalised
hypotonia, autistic behaviour and characteristic
phenotypic features. Intranasal insulin has been shown to
improve declarative memory in healthy adult subjects and
in patients with Alzheimer disease.
Aims: To assess if intranasal insulin is also able to
improve the developmental delay in children with 22q13
deletion syndrome.
Methods: We performed exploratory clinical trials in six
children with 22q13 deletion syndrome who received
intranasal insulin over a period of 1 year. Short-term
(during the first 6 weeks) and long-term effects (after
12 months of treatment) on motor skills, cognitive
functions, or autonomous functions, speech and communication,
emotional state, social behaviour, behavioural
disorders, independence in daily living and education were
assessed.
Results: The children showed marked short-term
improvements in gross and fine motor activities, cognitive
functions and educational level. Positive long-term effects
were found for fine and gross motor activities, nonverbal
communication, cognitive functions and autonomy.
Possible side effects were found in one patient who
displayed changes in balance, extreme sensitivity to touch
and general loss of interest. One patient complained of
intermittent nose bleeding.
Conclusions: We conclude that long-term administration
of intranasal insulin may benefit motor development,
cognitive functions and spontaneous activity in children
with 22q13 deletion syndrome
Improving the mesomorphic behaviour of supramolecular liquid crystals by resonance-assisted hydrogen bonding
A systematic structure-property relationship study on hydrogen-bonded liquid crystals was performed, revealing the impact of resonance-assisted hydrogen bonds (RAHBs) on the self-assembling behavior of the supramolecular architecture. The creation of a six-membered intramolecular hydrogen-bonded ring acts as a counterpart to the self-organization between hydrogen bond donators and acceptors and determines thus the suprastructure. Variation of the hydrogen-bonding pattern allowed us to significantly improve the temperature range of the reported liquid crystalline assemblies
Ortho-Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals
Photoresponsive liquid crystals (LCs) whose alignment can be controlled with UV-Visible light are appealing for a range of photonic applications. From the perspective of exploring the interplay between the light response and the self-assembly of the molecular components, supramolecular liquid crystals are of particular interest. They allow elaborating the structure-property relationships that govern the optical performance of LC materials by subtle variation of the chemical structures of the building blocks. Herein we present a supramolecular system comprising azophenols and stilbazoles as hydrogen-bond donors and acceptors, respectively, and show that ortho-fluorination of the azophenol dramatically increases the thermal stability of the LC phases, an important characteristics in their further utilization in photonics. The systems exhibit fast photoinduced order-disorder transitions, and rapid recovery of the liquid-crystalline state once the light irradiation is ceased, due to the photochemical properties of azophenols
Hydrogen-bonded liquid crystals with broad-range blue phases
We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time
Nasal Polypus In The Horse
A 3-year-old Standardbred male horse was admitted to Stange Memorial Clinic on March 24, 1949, with a growth protruding from the right nasal passage. History indicated that the growth was first noticed about two weeks prior to arrival at the Clinic. Growth was rapid, resulting in complete obstruction of the right nasal passage
Double Bragg diffraction: A tool for atom optics
The use of retro-reflection in light-pulse atom interferometry under
microgravity conditions naturally leads to a double-diffraction scheme. The two
pairs of counterpropagating beams induce simultaneously transitions with
opposite momentum transfer that, when acting on atoms initially at rest, give
rise to symmetric interferometer configurations where the total momentum
transfer is automatically doubled and where a number of noise sources and
systematic effects cancel out. Here we extend earlier implementations for Raman
transitions to the case of Bragg diffraction. In contrast with the
single-diffraction case, the existence of additional off-resonant transitions
between resonantly connected states precludes the use of the adiabatic
elimination technique. Nevertheless, we have been able to obtain analytic
results even beyond the deep Bragg regime by employing the so-called "method of
averaging," which can be applied to more general situations of this kind. Our
results have been validated by comparison to numerical solutions of the basic
equations describing the double-diffraction process.Comment: 26 pages, 20 figures; minor changes to match the published versio
- …