267 research outputs found

    Rare earth oxides in zirconium dioxide: How to turn a wide band gap metal oxide into a visible light active photocatalyst

    Get PDF
    In the present study, we investigated the effect of cerium and erbium doping of the zirconium dioxide matrix. We synthesized doped samples using hydrothermal process. The amounts of dopant used were 0.5%, 1% and 5% molar (rare earth oxide over zirconium dioxide) respectively. The samples have been studied via X-ray Diffraction measurements for the structural characterization. UV visible diffuse reflectance was used for the optical analysis, Brunauer-Emmett-Teller (BET) model for the measurement of the surface area. Finally the samples have been analysed via electron paramagnetic resonance (EPR) for the electronic characterization. Then we tested the new synthetized materials to determine their photo catalytic activity in the reaction of degradation of methylene blue performed under irradiation by diodes (LEDs) emitting exclusively visible light. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved

    Cerium-doped zirconium dioxide, a visible-light-sensitive photoactive material of third generation

    Get PDF
    The dispersion of small amounts of Ce4+ ions in the bulk of ZrO2 leads to a photoactive material sensitive to visible light. This is shown by monitoring with EPR the formation and the reactivity of photogenerated (lambda > 420 nm) charge carriers. The effect, as confirmed by DFT calculations, is due to the presence in the solid of empty 4f Ce states at the mid gap, which act as intermediate levels in a double excitation mechanism. This solid can be considered an example of a third-generation photoactive material
    corecore