12 research outputs found

    Evidence for Thermally Activated Spontaneous Fluxoid Formation in Superconducting Thin-Film Rings

    Full text link
    We have observed spontaneous fluxoid generation in thin-film rings of the amorphous superconductor Mo3_3Si, cooled through the normal-superconducting transition, as a function of quench rate and externally applied magnetic field, using a variable sample temperature scanning SQUID microscope. Our results can be explained using a model of freezout of thermally activated fluxoids, mediated by the transport of bulk vortices across the ring walls. This mechanism is complementary to a mechanism proposed by Kibble and Zurek, which only relies on causality to produce a freezout of order parameter fluctuations.Comment: 4 pages, 3 figure

    Antivortices due to competing orbital and paramagnetic pair-breaking effects

    Full text link
    Thermodynamically stable vortex-antivortex structures in a quasi-two-dimensional superconductor in a tilted magnetic field are predicted. For this geometry, both orbital and spin pair-breaking effects exist, with their relative strength depending on the tilt angle \Theta. The spectrum of possible states contains as limits the ordinary vortex state (for large \Theta) and the Fulde-Ferrell-Larkin-Ovchinnikov state (for \Theta=0). The quasiclassical equations are solved near H_{c2} for arbitrary \Theta and it is shown that stable states with coexisting vortices and antivortices exist in a small interval close to \Theta=0. The results are compared with recent predictions of antivortices in mesoscopic samples.Comment: 11 pages, 3 figure

    Fluxoid dynamics in superconducting thin film rings

    Full text link
    We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.Comment: 9 pages, 10 figures, fixed typo

    Search for Spontaneous Nucleation of Magnetic Flux During Rapid Cooling of YBCO films Through Tc

    Full text link
    We describe an experimental search for spontaneous formation of flux lines during a rapid quench of thin YBaCuO films through Tc. This effect is expected according to the Kibble-Zurek mechanism of a creation of topological defects of the order parameter during a symmetry breaking phase transition. Spontaneously formed vortices were previously observed in superfluid 3He, while a similar experiment in superfluid 4He gave negative results. Using a high Tc SQUID, we measured both the magnetic flux in the sample during a quench with a sensitivity of 20 phi-0/cm^2, and the field noise which one would expect from flux lines pinned in the film. The sensitivity was sufficient to detect spontaneous flux at a level corresponding to 10^(-3) of the prediction. Within our resolution, we saw no evidence for this effect.Comment: Manuscript and 4 figure

    Spontaneous magnetic-flux generation in superconducting ring

    No full text
    The Kibble-Zurek scenario for nucleation of topological defects of the order parameter during a symmetry-breaking phase transition in a superconducting ring is investigated. Solving numerically the set of time-dependent Ginzburg-Landau (TDGL) equations coupled with the temperature diffusion equation, we predict spontaneous generation of the magnetic flux inside the superconducting ring. Josephson weak links in the ring increase the magnitude of the spontaneously generated magnetic flux

    Relaxation of normal spot in type-II superconductors

    No full text
    Relaxational dynamics of the non-equilibrium normal domain in a superconductor is considered. It is shown, both analytically and numerically, that this relaxation leads to nucleation of topological vortices and antivortices. In the presence of strong pinning such a vortex/antivortex phase persists infinitely
    corecore