14,985 research outputs found

    Method for analyzing radiation sensitivity of integrated circuits

    Get PDF
    A method for analyzing the radiation sensitivity of an integrated circuit is described to determine the components. The application of a narrow radiation beam to portions of the circuit is considered. The circuit is operated under normal bias conditions during the application of radiation in a dosage that is likely to cause malfunction of at least some transistors, while the circuit is monitored for failure of the irradiated transistor. When a radiation sensitive transistor is found, then the radiation beam is further narrowed and, using a fresh integrated circuit, a very narrow beam is applied to different parts of the transistor, such as its junctions, to locate the points of greatest sensitivity

    On large deviation regimes for random media models

    Full text link
    The focus of this article is on the different behavior of large deviations of random subadditive functionals above the mean versus large deviations below the mean in two random media models. We consider the point-to-point first passage percolation time ana_n on Zd\mathbb{Z}^d and a last passage percolation time ZnZ_n. For these functionals, we have limnann=ν\lim_{n\to\infty}\frac{a_n}{n}=\nu and limnZnn=μ\lim_{n\to\infty}\frac{Z_n}{n}=\mu. Typically, the large deviations for such functionals exhibits a strong asymmetry, large deviations above the limiting value are radically different from large deviations below this quantity. We develop robust techniques to quantify and explain the differences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP535 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore