1,061 research outputs found
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Time Series Clustering with Deep Reservoir Computing
This paper proposes a method for clustering of time series, based upon the ability of deep Reservoir Computing networks to grasp
the dynamical structure of the series that is presented as input. A standard clustering algorithm, such as k-means, is applied to the network states, rather than the input series themselves. Clustering is thus embedded into the network dynamical evolution, since a clustering result is obtained at every time step, which in turn serves as initialisation at the next step. We empirically assess the performance of deep reservoir systems in time series clustering on benchmark datasets, considering the influence of crucial hyperparameters. Experimentation with the proposed model shows enhanced clustering quality, measured by the silhouette coefficient, when compared to both static clustering of data, and dynamic clustering with a shallow network
Pure Samples of Quark and Gluon Jets at the LHC
Having pure samples of quark and gluon jets would greatly facilitate the
study of jet properties and substructure, with many potential standard model
and new physics applications. To this end, we consider multijet and jets+X
samples, to determine the purity that can be achieved by simple kinematic cuts
leaving reasonable production cross sections. We find, for example, that at the
7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets
with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb
of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used.
b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon
jets has been adde
Reservoir Topology in Deep Echo State Networks
Deep Echo State Networks (DeepESNs) recently extended the applicability of
Reservoir Computing (RC) methods towards the field of deep learning. In this
paper we study the impact of constrained reservoir topologies in the
architectural design of deep reservoirs, through numerical experiments on
several RC benchmarks. The major outcome of our investigation is to show the
remarkable effect, in terms of predictive performance gain, achieved by the
synergy between a deep reservoir construction and a structured organization of
the recurrent units in each layer. Our results also indicate that a
particularly advantageous architectural setting is obtained in correspondence
of DeepESNs where reservoir units are structured according to a permutation
recurrent matrix.Comment: Preprint of the paper published in the proceedings of ICANN 201
Deep Tree Transductions - A Short Survey
The paper surveys recent extensions of the Long-Short Term Memory networks to
handle tree structures from the perspective of learning non-trivial forms of
isomorph structured transductions. It provides a discussion of modern TreeLSTM
models, showing the effect of the bias induced by the direction of tree
processing. An empirical analysis is performed on real-world benchmarks,
highlighting how there is no single model adequate to effectively approach all
transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep
Learning (INNSBDDL 2019). arXiv admin note: text overlap with
arXiv:1809.0909
Richness of Deep Echo State Network Dynamics
Reservoir Computing (RC) is a popular methodology for the efficient design of
Recurrent Neural Networks (RNNs). Recently, the advantages of the RC approach
have been extended to the context of multi-layered RNNs, with the introduction
of the Deep Echo State Network (DeepESN) model. In this paper, we study the
quality of state dynamics in progressively higher layers of DeepESNs, using
tools from the areas of information theory and numerical analysis. Our
experimental results on RC benchmark datasets reveal the fundamental role
played by the strength of inter-reservoir connections to increasingly enrich
the representations developed in higher layers. Our analysis also gives
interesting insights into the possibility of effective exploitation of training
algorithms based on stochastic gradient descent in the RC field.Comment: Preprint of the paper accepted at IWANN 201
- …