5,907 research outputs found

    Higher-Dimensional Bulk Wormholes and their Manifestations in Brane Worlds

    Get PDF
    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type.Comment: 21 pages, 1 figur

    Riemannian geometry of irrotational vortex acoustics

    Full text link
    We consider acoustic propagation in an irrotational vortex, using the technical machinery of differential geometry to investigate the ``acoustic geometry'' that is probed by the sound waves. The acoustic space-time curvature of a constant circulation hydrodynamical vortex leads to deflection of phonons at appreciable distances from the vortex core. The scattering angle for phonon rays is shown to be quadratic in the small quantity Γ/(2πcb)\Gamma/(2\pi cb), where Γ\Gamma is the vortex circulation, cc the speed of sound, and bb the impact parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to appear in Physical Review Letter

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Inverse hyperbolic problems and optical black holes

    Get PDF
    In this paper we give a more geometrical formulation of the main theorem in [E1] on the inverse problem for the second order hyperbolic equation of general form with coefficients independent of the time variable. We apply this theorem to the inverse problem for the equation of the propagation of light in a moving medium (the Gordon equation). Then we study the existence of black and white holes for the general hyperbolic and for the Gordon equation and we discuss the impact of this phenomenon on the inverse problems

    van Vleck determinants: traversable wormhole spacetimes

    Full text link
    Calculating the van Vleck determinant in traversable wormhole spacetimes is an important ingredient in understanding the physical basis behind Hawking's chronology protection conjecture. This paper presents extensive computations of this object --- at least in the short--throat flat--space approximation. An important technical trick is to use an extension of the usual junction condition formalism to probe the full Riemann tensor associated with a thin shell of matter. Implications with regard to Hawking's chronology protection conjecture are discussed. Indeed, any attempt to transform a single isolated wormhole into a time machine results in large vacuum polarization effects sufficient to disrupt the internal structure of the wormhole before the onset of Planck scale physics, and before the onset of time travel. On the other hand, it is possible to set up a putative time machine built out of two or more wormholes, each of which taken in isolation is not itself a time machine. Such ``Roman configurations'' are much more subtle to analyse. For some particularly bizarre configurations (not traversable by humans) the vacuum polarization effects can be arranged to be arbitrarily small at the onset of Planck scale physics. This indicates that the disruption scale has been pushed down into the Planck slop. Ultimately, for these configurations, questions regarding the truth or falsity of Hawking's chronology protection can only be addressed by entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP

    Spacetime geometry of static fluid spheres

    Full text link
    We exhibit a simple and explicit formula for the metric of an arbitrary static spherically symmetric perfect fluid spacetime. This class of metrics depends on one freely specifiable monotone non-increasing generating function. We also investigate various regularity conditions, and the constraints they impose. Because we never make any assumptions as to the nature (or even the existence) of an equation of state, this technique is useful in situations where the equation of state is for whatever reason uncertain or unknown. To illustrate the power of the method we exhibit a new form of the ``Goldman--I'' exact solution and calculate its total mass. This is a three-parameter closed-form exact solution given in terms of algebraic combinations of quadratics. It interpolates between (and thereby unifies) at least six other reasonably well-known exact solutions.Comment: Plain LaTeX 2e -- V2: now 22 pages; minor presentation changes in the first part of the paper -- no physics modifications; major additions to the examples section: the Gold-I solution is shown to be identical to the G-G solution. The interior Schwarzschild, Stewart, Buch5 XIII, de Sitter, anti-de Sitter, and Einstein solutions are all special cases. V3: Reference, footnotes, and acknowledgments added, typos fixed -- no physics modifications. V4: Technical problems with mass formula fixed -- affects discussion of our examples but not the core of the paper. Version to appear in Classical and Quantum Gravit

    Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds

    Full text link
    We refine and extend a programme initiated by one of the current authors [Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the classical energy conditions of general relativity in a cosmological setting to place very general bounds on various cosmological parameters. We show how the energy conditions can be used to bound the Hubble parameter H(z), Omega parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as (relatively) simple functions of the redshift z, present-epoch Hubble parameter H_0, and present-epoch Omega parameter Omega_0. We compare these results with related observations in the literature, and confront the bounds with the recent supernova data.Comment: 21 pages, 2 figure

    Stable gravastars with generalised exteriors

    Full text link
    New spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti--de Sitter or de Sitter interior and a Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviours of the equation of state for these parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit
    • …
    corecore