2,579 research outputs found

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k≥0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Fermionization of two distinguishable fermions

    Full text link
    In this work we study a system of two distinguishable fermions in a 1D harmonic potential. This system has the exceptional property that there is an analytic solution for arbitrary values of the interparticle interaction. We tune the interaction strength via a magnetic offset field and compare the measured properties of the system to the theoretical prediction. At the point where the interaction strength diverges, the energy and square of the wave function for two distinguishable particles are the same as for a system of two identical fermions. This is referred to as fermionization. We have observed this phenomenon by directly comparing two distinguishable fermions with diverging interaction strength with two identical fermions in the same potential. We observe good agreement between experiment and theory. By adding one or more particles our system can be used as a quantum simulator for more complex few-body systems where no theoretical solution is available

    Survey of Beam Optics Solutions for the MLS Lattice

    Get PDF
    The Metrology Light Source MLS is an electron storage ring containing 24 quadrupole magnets which can be powered individually. Fully exploring the capabilities of the machine optics by tracking or experiment would be very time consuming. Therefore the quadrupoles were combined in five families and a numerical brute force approach was used to scan for areas of stable solutions in the scope of linear beam optics. In order to get information on the expected beam lifetimes for each generated optics, a model for the Touschek lifetime was implemented. Simulation results as well as experimental tests of selected optics will be presente

    THz Bursting Thresholds Measured at the Metrology Light Source

    Get PDF
    At the Metrology Light Source MLS [1] owned by the Physikalisch Technische Bundesanstalt PTB the bunch length can be varied by more than two orders of magnitude [2]. The bunch length manipulation is achieved by varying different machine parameters, such as RF voltage amplitude up to 500 kV and the momentum compaction factor amp; 945; over three orders of magnitude. The subject of this article is the measurement of THz bursting thresholds at the MLS for different bunch length
    • …
    corecore