1 research outputs found
Identification of NVP-TNKS656: The Use of Structure–Efficiency Relationships To Generate a Highly Potent, Selective, and Orally Active Tankyrase Inhibitor
Tankyrase
1 and 2 have been shown to be redundant, druggable nodes
in the Wnt pathway. As such, there has been intense interest in developing
agents suitable for modulating the Wnt pathway in vivo by targeting
this enzyme pair. By utilizing a combination of structure-based design
and LipE-based structure efficiency relationships, the core of XAV939
was optimized into a more stable, more efficient, but less potent
dihydropyran motif <b>7</b>. This core was combined with elements
of screening hits <b>2</b>, <b>19</b>, and <b>33</b> and resulted in highly potent, selective tankyrase inhibitors that
are novel three pocket binders. NVP-TNKS656 (<b>43</b>) was
identified as an orally active antagonist of Wnt pathway activity
in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic
signature of binding, highly favorable physicochemical properties,
and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor
that is well suited for further in vivo validation studies