1,614 research outputs found

    Evolution of Superconductivity in Electron-Doped Cuprates: Magneto-Raman Spectroscopy

    Full text link
    The electron-doped cuprates Pr_{2-x}Ce_xCuO_4 and Nd_{2-x}Ce_xCuO_4 have been studied by electronic Raman spectroscopy across the entire region of the superconducting (SC) phase diagram. The SC pairing strength is found to be consistent with a weak-coupling regime except in the under-doped region where we observe an in-gap collective mode at 4.5 k_{B}T_c while the maximum amplitude of the SC gap is ~8 k_{B}T_{c}. In the normal state, doped carriers divide into coherent quasi-particles (QPs) and carriers that remain incoherent. The coherent QPs mainly reside in the vicinity of (\pi/2, \pi/2) regions of the Brillouin zone (BZ). We find that only coherent QPs contribute to the superfluid density in the B_{2g} channel. The persistence of SC coherence peaks in the B_{2g} channel for all dopings implies that superconductivity is mainly governed by interactions between the hole-like coherent QPs in the vicinity of (\pi/2, \pi/2) regions of the BZ. We establish that superconductivity in the electron-doped cuprates occurs primarily due to pairing and condensation of hole-like carriers. We have also studied the excitations across the SC gap by Raman spectroscopy as a function of temperature (T) and magnetic field (H) for several different cerium dopings (x). Effective upper critical field lines H*_{c2}(T, x) at which the superfluid stiffness vanishes and H^{2\Delta}_{c2}(T, x) at which the SC gap amplitude is suppressed by field have been determined; H^{2\Delta}_{c2}(T, x) is larger than H*_{c2}(T, x) for all doping concentrations. The difference between the two quantities suggests the presence of phase fluctuations that increase for x< 0.15. It is found that the magnetic field suppresses the magnitude of the SC gap linearly at surprisingly small fields.Comment: 13 pages, 8 figures; submitted to Phys. Rev.

    A Bayesian dose-response meta-analysis model: simulation study and application

    Get PDF
    Dose-response models express the effect of different dose or exposure levels on a specific outcome. In meta-analysis, where aggregated-level data is available, dose-response evidence is synthesized using either one-stage or two-stage models in a frequentist setting. We propose a hierarchical dose-response model implemented in a Bayesian framework. We present the model with cubic dose-response shapes for a dichotomous outcome and take into account heterogeneity due to variability in the dose-response shape. We develop our Bayesian model assuming normal or binomial likelihood and accounting for exposures grouped in clusters. We implement these models in R using JAGS and we compare our approach to the one-stage dose-response meta-analysis model in a simulation study. We found that the Bayesian dose-response model with binomial likelihood has slightly lower bias than the Bayesian model with the normal likelihood and the frequentist one-stage model. However, all three models perform very well and give practically identical results. We also re-analyze the data from 60 randomized controlled trials (15,984 participants) examining the efficacy (response) of various doses of antidepressant drugs. All models suggest that the dose-response curve increases between zero dose and 40 mg of fluoxetine-equivalent dose, and thereafter is constant. We draw the same conclusion when we take into account the fact that five different antidepressants have been studied in the included trials. We show that implementation of the hierarchical model in Bayesian framework has similar performance to, but overcomes some of the limitations of the frequentist approaches and offers maximum flexibility to accommodate features of the data

    THE RELATIONSHIP BETWEEN INTRUSIVE COGNITIONS AND DEFENSE MECHANISMS IN HEALTHY AND CLINICAL POPULATIONS

    Get PDF
    Purpose: to examine the relationship between defense mechanisms and intrusive cognitions in normal healthy individuals and psychiatric patients. Methodology: The study sample consists of a healthy group (n=60; 30 males &amp; 30 females), whereas the clinical group (n=66; 34 males, 32 females) includes patients with major depressive disorder (12 patients, 5 males, 7 females), schizophrenia (31 patients; 14 males, 17 females), obsessive-compulsive disorder (23 patients; 15 males, 8 females). We used several scales to measure the following variables: intrusive cognitions, intrusive memories, and defense mechanisms. Finding: The results show that there is a positive correlation between defense mechanisms and intrusive cognitions in healthy and clinical groups. Intrusive cognitions were more common in the patient than in a healthy group. Furthermore, there was no significant difference between males and females in measures of intrusive thoughts and memories in both groups. Implications: These findings have implications for behavioral treatment. Treatments used for managing posttraumatic stress disorder can also be used for the treatment of a major depressive disorder, OCD, and schizophrenia. Originality: This investigation the relationship between intrusive cognitions and defense mechanisms in healthy and clinical populations and its implication on the cue exposure therapy that can be the treatment of intrusive cognitions and thoughts in with major depressive disorder, OCD, and schizophrenia

    Correlated Markov Quantum Walks

    Full text link
    We consider the discrete time unitary dynamics given by a quantum walk on Zd\Z^d performed by a particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in Zd\Z^d for random updates of the coin states of the following form. The random sequences of unitary updates are given by a site dependent function of a Markov chain in time, with the following properties: on each site, they share the same stationnary Markovian distribution and, for each fixed time, they form a deterministic periodic pattern on the lattice. We prove a Feynman-Kac formula to express the characteristic function of the averaged distribution over the randomness at time nn in terms of the nth power of an operator MM. By analyzing the spectrum of MM, we show that this distribution posesses a drift proportional to the time and its centered counterpart displays a diffusive behavior with a diffusion matrix we compute. Moderate and large deviations principles are also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. An example of random updates for which the analysis of the distribution can be performed without averaging is worked out. The random distribution displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix whose law we compute. We complete the picture by presenting an uncorrelated example.Comment: 37 pages. arXiv admin note: substantial text overlap with arXiv:1010.400
    corecore