
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
1
9
5
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
8
.
6
.
2
0
2
1

 1 

A Bayesian dose-response meta-analysis 

model: A simulations study and 

application  
 

 

Tasnim Hamza1, Andrea Cipriani2, Toshi A. Furukawa3, Matthias Egger1, Nicola Orsini4, Georgia Salanti1. 

 
1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland. 2Department of Psychiatry, 

University of Oxford. 3Department of Health Promotion and Human Behavior, and Department of Clinical 
Epidemiology, Graduate School of Medicine/School of Public Health, Kyoto University, Kyoto, Japan. 
4Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden. 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/390050748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 

 

Abstract  

 

Dose-response models express the effect of different dose or exposure levels on a specific 

outcome. In meta-analysis, where aggregated-level data is available, dose-response evidence 

is synthesized using either one-stage or two-stage models in a frequentist setting. We propose 

a hierarchical dose-response model implemented in a Bayesian framework. We develop our 

model assuming normal or binomial likelihood and accounting for exposures grouped in 

clusters. To allow maximum flexibility, the dose-response association is modelled using 

restricted cubic splines. We implement these models in R using JAGS and we compare our 

approach to the one-stage dose-response meta-analysis model in a simulation study. We found 

that the Bayesian dose-response model with binomial likelihood has lower bias than the 

Bayesian model with normal likelihood and the frequentist one-stage model when studies have 

small sample size. When the true underlying shape is log-log or half-sigmoid, the performance 

of all models depends on choosing an appropriate location for the knots. In all other examined 

situations, all models perform very well and give practically identical results. We also re-

analyze the data from 60 randomized controlled trials (15,984 participants) examining the 

efficacy (response) of various doses of serotonin-specific reuptake inhibitor (SSRI) 

antidepressant drugs. All models suggest that the dose-response curve increases between zero 

dose and 30-40 mg of fluoxetine-equivalent dose, and thereafter shows small decline. We draw 

the same conclusion when we take into account the fact that five different antidepressants have 

been studied in the included trials. We show that implementation of the hierarchical model in 

Bayesian framework has similar performance to, but overcomes some of the limitations of the 

frequentist approach and offers maximum flexibility to accommodate features of the data. 
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1 Introduction  
 

Dose-response associations examine the effect of different levels of exposure (for example, 

levels of smoking or drug doses) on a health outcome [1, 2]. In pairwise meta-analysis [3–5], 

combining dose-response associations from different studies and settings may lead to more 

precise and generalizable conclusions [6]. When aggregate-level data are available from 

multiple studies, dose-response associations can be synthesized using either a one-stage or two-

stage model. The one-stage model is implemented as a linear mixed model, which estimates a 

dose-response fixed effect and accounts for the heterogeneity by allowing shapes to vary across 

studies [7]. In a two-stage model, the dose-response model is fitted first within each study, and 

then the regression coefficients (or shape characteristics) are synthesized across studies [8–10].  

The one-stage model takes into account heterogeneity but provides relevant information 

via the estimate of a between-studies variance-covariance matrix. The two-stage model 

employs standard meta-analytical techniques and provides the usual heterogeneity measures, 

such as I2, in case this is of interest. However, to fit non-linear shapes, frequentist 

implementation of the two-stage model requires multiple dose levels to be reported in each 

study. For example, if the dose-response curve is assumed to be approximated by a 𝑝-order 

polynomial, all studies need to report outcomes for at least 𝑝 + 1 dose levels. This situation 

will result in excluding studies that report 𝑝 dose levels or fewer levels.  

The one-stage and two-stage models are implemented in a frequentist setting, and their 

performance has been evaluated in simulations and examples [11]. Fitting dose-response meta-

analysis in a Bayesian framework, in the form of a hierarchical model, is, in our view, highly 

desirable. Several papers [12, 13] have described the advantages of Bayesian evidence 

synthesis. First, Bayesian models [14, 15] can be easily extended to incorporate, for example, 

study-specific covariates, to combine observational and randomized data, or to deal with 

multiple outcomes and exposure types. Second, one can employ informative priors for the 

dose-response shape to reflect expert knowledge or evidence from external data sources. Third, 

one can easily extend the model to explore the variation in dose-response curves within and 

across groups of similar exposures or drugs.  Finally, probabilistic statements follow naturally 

as the posterior distributions can be interpreted as the true distributions of quantities of interest 

as uncertainty about all parameters is incorporated in the results [16, 17].  

The paper is structured as follow. In Section 2 we present a Bayesian hierarchical dose-

response meta-analysis model with normal or binomial likelihood and the cluster-specific dose-
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response model. The evaluation of the properties of the models follows in Section 3, alongside 

comparisons with the frequentist model in a simulations study. In Section 4, we re-analyse a 

dataset of the dose-response association of various doses of antidepressants. Finally, we discuss 

the strengths and limitations of the model in Section 5. 

2 Methods 

We introduce a Bayesian hierarchical model for dose-response meta-analysis. We focus on a 

dichotomous outcome, although the models could easily accommodate continuous outcomes.  

2.1 Notation 

Table 1 summarizes the notation. Suppose there are 𝑛𝑠 studies (𝑖 = 1, … , 𝑛𝑠) and each study 

has a number of doses 𝑛𝑑𝑖 (𝑗 = 1, … , 𝑛𝑑𝑖). Each study reported an empirical estimate of the 

outcome at each dose level. The doses are denoted by  𝑋𝑖𝑗 where the minimum dose 𝑋𝑖0 is set 

as the reference level (control group). The observed outcome is expressed as number of events 

out of total observed or relative treatment effects. The dose-specific number of events is 𝑟𝑖𝑗 out 

of a total sample size 𝑛𝑖𝑗. The estimated change in the outcome from the reference dose 𝑋𝑖0 to 

dose 𝑋𝑖𝑗, summarized for the 𝑛𝑖𝑗 participants, is indicated by 𝑌𝑖𝑗   . 𝑌𝑖𝑗  can be log odds ratio 

(logOR), log risk ratio (logRR), log hazard ratio (logHR), or any relative treatment effect for 

continuous outcomes such as mean difference. Relative effects rather than number of events 

are commonly reported in the context of studying environmental exposures or other exposures 

examined in observational studies [18]. In this case, the relative effects 𝑌𝑖𝑗   are the estimates 

from multivariable models adjusted for possible confounding variables. The vector 𝒀𝒊 =

(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖(𝑛𝑑𝑖−1)) comprises all relative effects, on a natural logarithmic scale, for study 

𝑖.  

 

2.2 Dose-response meta-analysis model 

We propose a hierarchical two-level model.  In the first level, the dose-response model is fitted 

within each study assuming either normal (normal dose-response model) or binomial 

likelihood (binomial dose-response model) for the observed data. In the second level, we 

synthesize the dose-response regression coefficients across studies. The hierarchical structure 

allows coefficients to borrow strength across studies, via the exchangeability assumption. 
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2.2.1 Dose-response model within each study 

Within each study 𝑖, a multivariate normal distribution is assumed for 𝒀𝒊  

𝒀𝒊 ~ 𝑀𝑉𝑁(𝜟𝒊, 𝑺𝒊), 

where the vector 𝜟𝒊 = (𝛿𝑖1 , … , 𝛿𝑖(𝑛𝑑𝑖−1)) contains the underlying relative effects of dose 𝑋𝑖𝑗 

relative to dose 𝑋𝑖0. The (𝑛𝑑𝑖-1) ×(𝑛𝑑𝑖-1) variance-covariance matrix 𝑺𝒊 can be estimated 

assuming a multinomial distribution for the number of events per dose and using the delta-

method for large sample sizes [19, 20]. For logOR, the elements of 𝑺𝒊 are 

𝜎2̂
𝑖𝑗𝑚 = {

1/𝑟𝑖0 + 1/𝑡𝑖0, 𝑖𝑓 𝑗 ≠ 𝑚
1/𝑟𝑖𝑗  + 1/𝑡𝑖𝑗  +  1/𝑟𝑖0 + 1/𝑡𝑖0, 𝑖𝑓 𝑗 = 𝑚

 , 

where 𝑡 refers to the number of non-events and the zero index refers to the quantities in the 

reference dose. The formula above is suitable when the logORs are estimated from 2x2 tables. 

If the logORs originate from adjusted logistic models from observational studies, then a 

correction in the correlations between dose strata should be applied to 𝑺𝒊, using the Longnecker 

and Greenland method [9, 10] or the approach suggested by Hamling [21]. 

If the data are from a randomized trial and the table of counts is available, it is 

straightforward to assume a binomial distribution of events 

𝑟𝑖𝑗~𝐵𝑖𝑛𝑜𝑚(𝑝𝑖𝑗, 𝑛𝑖𝑗), 

where 𝑝𝑖𝑗  are the underlying probabilities of having an event in dose 𝑗 within study 𝑖. Then 

the underlying relative treatment effects are parametrised as 

𝜆(𝑝𝑖0) = 𝑢𝑖 

𝜆(𝑝𝑖𝑗) = 𝑢𝑖 + 𝛿𝑖𝑗, 

with 𝛿𝑖𝑗 defined as above. The function 𝜆 is specified based on the effect size we want to 

estimate; for example, it is the logit function for logOR and the log function for logRR. The 

parameter  𝑢𝑖 is the log-odds of the event in the reference dose level.  

Note that continuous outcome data can be accommodated if 𝒀𝒊  are mean differences or 

standardized mean differences. Alternatively, if the outcome is available for each dose level, 

the normal likelihood is used instead of the binomial, and 𝛿𝑖𝑗 is parameterized as the mean 

difference or standardized mean difference.  

2.2.2 Dose-response functions 

The underlying relative effect 𝛿𝑖𝑗 can be modelled as 

𝛿𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝑋𝑖0;  𝜷𝒊), 
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where 𝑓 is the dose-response function and 𝜷𝒊 are the shape parameters that need to be 

estimated. Note that the 𝑓 function could also be any transformation, including linear, 

quadratic, cubic or fractional polynomials and resulting in 𝜷𝒊 = (𝛽𝑘𝑖) being a vector of length 

𝑝 and 𝑘 = 1,2, … , 𝑝 [22]. The simplest case is to assume a linear (𝑓 is the identity function)  

shape 𝑝 = 1 where the statistical model needs to estimate only one parameter in study 𝑖;  𝜷𝒊 =

 𝛽𝑖 and  𝛿𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝑋𝑖0;  𝛽𝑖) = 𝛽𝑖  (𝑋𝑖𝑗 − 𝑋𝑖0). However, investigating dose-response 

relations underlying several studies may require non-linear models [23]. A flexible choice is 

using restricted cubic splines [24].  With 𝑚 knots, there are 𝑝 = 𝑚 − 1 regression coefficients 

in 𝜷𝒊 to be estimated. Setting 𝑚 = 3 (say 𝑘1, 𝑘2, 𝑘3), will result into 𝑓 consisting of 𝑝 = 2 

dose-transformations; 𝑓1 is the identity function and 𝑓2 the restricted cubic spline 

transformation [24] with coefficients 𝜷𝒊 = (𝛽1𝑖 , 𝛽2𝑖).  

𝛿𝑖𝑗 = 𝛽1𝑖{𝑓1(𝑋𝑖𝑗) − 𝑓1(𝑋𝑖0)} + 𝛽2𝑖  {𝑓2(𝑋𝑖𝑗) − 𝑓2(𝑋𝑖0)}, 

where 

𝑓1(𝑋𝑖𝑗) = 𝑋𝑖𝑗 , 

and  

𝑓2(𝑋𝑖𝑗) =
(𝑋𝑖𝑗 − 𝑘1)+

3 −
𝑘3 − 𝑘1

𝑘3 − 𝑘2
 (𝑋𝑖𝑗 − 𝑘2)+

3 +  
𝑘2 − 𝑘1

𝑘3 − 𝑘2
 (𝑋𝑖𝑗 − 𝑘3)+

3

(𝑘3 − 𝑘1)2
. 

 

with (𝑥)+  =  𝑥 if 𝑥 >  0 and 0 otherwise. 

           

The total number and location of knots should be identical for all studies, when  𝜷𝒊 are 

to be pooled. To set the location of knots, Harrell suggests to use fixed sample quantiles. With 

three knots, we set them at  the 10%, 50% and 90% percentiles of the observed dose (see 

Section 2.4 in [24]). It has been shown that the location of knots in restricted cubic spline is 

not very critical in most situation as Stone found in a series of simulations [25]. However, we 

further examine this issue in our simulations study.  

2.2.3 Synthesize dose-response functions across studies 

In dose-response meta-analysis, the study-specific regression coefficients  𝜷𝒊 =

(𝛽1𝑖 , 𝛽2𝑖 , … , 𝛽𝑝𝑖)  can then be synthesized.  Random dose-response coefficients model assumes 

that the underlying study-specific coefficients  𝜷𝒊  are normally distributed with mean 𝑩 =

(𝐵1, 𝐵2, … 𝐵𝑝 ) and variance-covariance matrix, 𝜮, that is  

 𝜷𝒊~ 𝑀𝑉𝑁(𝑩, 𝜮 ). 
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This model acknowledges the presence of a distribution of true dose-response relationships 

underlying the studies and is capable of predicting study-specific curves by borrowing strength 

from their variation across studies. 𝜮 is a 𝑝 × 𝑝 variance-covariance matrix with diagonal 

elements  𝜏𝑝
2  and in the off-diagonal there are the 𝑝 − 1 covariances between the coefficients.  

To improve estimation, we will assume that 𝜏𝑝
2 = 𝜏2  and we will explore whether the 

correlations 𝜌 in 𝛴 are different from zero. Note that this model assumes that the heterogeneity 

across the study-specific estimates is fully captured by heterogeneity in the dose-response 

shapes. For a model with a common dose-response coefficient we set  𝜷𝒊 = 𝑩.  

Note that for studies with 𝑑𝑛𝑖 < 𝑝 + 1,  𝜷𝒊 is not identifiable. However, because of the 

exchangeability (or equality) of   𝜷𝒊 across studies, we are able to estimate them.  

2.3 Dose-response meta-analysis model accounting for clustering in the 

exposure  

Consider an exposure (or drug) variable that can take on different values. For example, daily 

intake of omega 3 fatty acids in relation to risk of cardiovascular events, possibly accounting 

for the different assessment of omega 3 (food supplements versus diet with fish and nuts). The 

differences between these two dose-response curves can be modelled by inserting type-specific 

regression coefficients 𝜷𝒊
𝒄 = (𝛽1𝑖

𝑐 , 𝛽2𝑖
𝑐 , … 𝛽𝑝𝑖

𝑐 ) , where 

𝑐 = { 1: food supplements, 2: diet with fish and nuts}. 

Overall, for a random of exposure clusters 𝑐 = 1,2, … , 𝐶 the relative effects are mapped 

to the transformed dose as  

𝛿𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝑋𝑖0;  𝜷𝒊
𝒄). 

Next, 𝜷𝒊
𝒄,  the vectors of coefficients from study 𝑖 examining the same cluster of exposures, are 

synthesised using a multivariate normal distribution with a common mean 𝑩𝒄 =

(𝐵1
𝑐 , 𝐵2

𝑐 , … 𝐵𝑝
𝑐  )   and variance-covariance matrix 𝜮𝒘𝒊𝒕𝒉𝒊𝒏 ; that is a 𝑝 × 𝑝 matrix with diagonal 

𝜏𝑤𝑖𝑡ℎ𝑖𝑛
2  and on the off-diagonal the 𝑝 − 1 covariances between the coefficients 

𝜷𝒊
𝒄~ 𝑀𝑉𝑁(𝑩𝒄 , 𝜮𝒘𝒊𝒕𝒉𝒊𝒏 ). 

At the next step, the cluster-specific dose-response associations 𝑩𝒄 are synthesised across the 𝐶 

clusters. Again, a multivariate normal distribution with mean vector 𝑩 and variance-covariance 

matrix 𝜮𝒃𝒆𝒕𝒘𝒆𝒆𝒏   is employed. 𝜮𝒃𝒆𝒕𝒘𝒆𝒆𝒏 has the same dimension as 𝜮𝒘𝒊𝒕𝒉𝒊𝒏 and in the diagonal 

the parameter 𝜏𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  measures the heterogeneity between the clusters  

𝑩𝒄~ 𝑀𝑉𝑁(𝑩 , 𝜮𝒃𝒆𝒕𝒘𝒆𝒆𝒏  ) 
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2.4 Predicting an absolute mean response to a dose 

Once the data are synthesized and the dose-response parameters are estimated, we can predict 

the absolute mean response for any dose within the range of studied dose levels. These 

predictions are straightforward within a Bayesian model as the total uncertainty in the 

parameters is propagated in the final predictions. Assume there is a natural reference dose, such 

as a dose zero or no-exposure (baseline dose). The observations 𝑟𝑖0, , 𝑛𝑖0 from the zero dose 

levels can be parametrised to estimate an average summary response to zero-dose 𝑅0 

𝑟𝑖0~𝐵𝑖𝑛𝑜𝑚(𝑝𝑖0, 𝑛𝑖0), 

𝜆(𝑝𝑖0)~𝑁(𝑅0, 𝜎0
2). 

Then, the estimated common baseline mean effect 𝑅0 (measured on the log or logit 

probability scale) can be combined with 𝑩 to obtain the predicted absolute response to any 

given dose level 𝑋𝑗 

𝜆−1{𝐵1{𝑓1(𝑋𝑗) − 𝑓1(𝑋0)} + 𝐵2 {𝑓2(𝑋𝑗) − 𝑓2(𝑋0)} + 𝑅0} 

2.5 Bayesian estimation 

We will use Markov chain Monte Carlo (MCMC) techniques to estimate all parameters in a 

Bayesian setting. An approximate non-informative prior distribution is chosen for the 

coefficients and the baseline effects 𝑢𝑖0 = logit (𝑝𝑖0) in the binomial model  

𝐵𝑘~𝑁(0, 103) 

𝑢𝑖0~𝑁(0, 103). 

Given that both in the simulations and in the example our outcome is dichotomous and 

measured on the natural log scale, we place a half-normal prior to the heterogeneity parameter  

𝜏~ 𝑁0(0,1)  

This heterogeneity prior is minimally informative in most cases as ORs rarely exceed 5 and 

hence the underlying values of 𝐵𝑘’s should not often exceed |0.2|.  

For correlations 𝜌 in the off-diagonal of the variance-covariances matrices, we use a uniform 

prior: 

𝜌~𝑈𝑛𝑖𝑓(−1,1). 

 All Bayesian models are implemented in JAGS within R [26, 27]. The codes can be 

found in GitHub at https://github.com/htx-r/DoseResponsePMA. To obtain the spline 

transformations, we use the rcs function from the rms package [28]. To evaluate the 

convergence of the models we employed various diagnostic tools for MCMC included in the 

coda package [29]. We explored convergence plots for the MCMC (histograms, trace plots, 

https://github.com/htx-r/DoseResponsePMA
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Geweke plot and Gelman-Rubin plot) and relevant statistics (Raftery and Lewis statistic and 

Heidelberger and Welch test) [30]. 

3 Simulations study 

We aim to investigate the agreement between the estimations of the dose-response meta-

analysis curve under our two Bayesian models, assuming random-effects for the coefficients, 

and the frequentist one-stage model [31]. The codes are available in GitHub.  

3.1 Simulation design 

We investigated the performance of the three models assuming that the true dose-response 

function is curvilinear (setting 1), half-sigmoid or log-log (setting 2) . Characteristics of the 

simulated settings are summarized in Table 2.  

Under the assumption of a curvilinear relationship (setting 1) , we used restricted cubic 

splines  with 3 knots at fixed percentiles (25th, 50th, and 75th) of the dose, with shape defined 

by the spline coefficients. We modelled the logOR and the logRR. For 40 clinical trials, we 

simulated study-level aggregated data. For each study, we simulated two non-zero doses from 

uniform distribution 𝑋𝑖𝑗~Unif(1 ,10) and assumed each study reported one zero dose.  The 

study-specific coefficients 𝛽𝑖1 and 𝛽𝑖2 are generated independently from univariate normal 

distribution with means 𝐵1 and 𝐵2, respectively, and common heterogeneity 𝜏. Values for 𝐵1 

and 𝐵2 where chosen to produce to represent four dose-response lines: no association (both 

equal to zero), linear (𝐵2 = 0), monotone increasing and umbrella-like shape (see Appendix 

Figure 1 and Figure 1).  We chose non-zero coefficient values that cover a reasonable range 

for ORs (0.3 to 5). We introduced between-study heterogeneity, 𝜏 = 0.001, 0.01. The assumed 

mean and heterogeneity values result in eight scenarios, as shown in Appendix Table 1-3.  

Using 𝛽1𝑖, 𝛽2𝑖 and 𝑋𝑖𝑗  , we calculated the underlying treatment effect 𝛿𝑖𝑗 =

log 𝑂𝑅𝑖𝑗 = 𝐵1𝑓1(𝑋𝑖𝑗) + 𝐵2 𝑓2(𝑋𝑖𝑗) (𝑓1 𝑎𝑛𝑑 𝑓2 are set as explained above in Section 2.2.2). To 

improve computing time, we assumed that the two shape coefficients 𝛽1𝑖 and 𝛽2𝑖 are unrelated 

(𝜌 = 0). Per dose, the observed number of events 𝑟𝑖𝑗 are generated from binomial distributions 

with probability 𝑝𝑖𝑗  and sample size 𝑛𝑖𝑗. The event rate in the zero-dose group 𝑝0 is set to 0.1. 

The underlying event rate at dose 𝑗 is 𝑝𝑖𝑗 = exp (𝛿𝑖𝑗) × 𝑝0. The sample size per dose is 

generated from a uniform distribution 𝑛𝑖𝑗~Unif(180,220) . In this way, the number of events 

and sample size per dose for each study are generated and used as input for the Bayesian 
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binomial model. Using these counts, we then estimate log 𝑂𝑅̂𝑖𝑗 and their standard errors to use 

as inputs for the Bayesian normal and frequentist models [31].  

Following the same steps as in logOR above, we simulated the dataset expressing the 

underlying treatment effect, instead, in terms of risk ratio; 𝛿𝑖𝑗 = log 𝑅𝑅𝑖𝑗. The additional 

concern, particularly for RR, that we need to confine probabilities within 0 and 1. Therefore, 

we inserted, 𝑚𝑎𝑥𝑅𝑅 = exp((𝐵𝑘 + 2𝜏)  × max (𝑓(𝑋𝑖𝑗))) then we set 𝑝0 = 0.5/𝑚𝑎𝑥𝑅𝑅. 

Along with that, we restrict the values of both 𝑝0 and 𝑝1; 0.05 < 𝑝0 < 0.95 and 𝑝1 < 0.97, to 

avoid numerical problems that emerge near the boundaries.  

In the second setting (Table 2), we assumed the true shape is log-log (𝛿𝑖𝑗 = log 𝑂𝑅𝑖𝑗 =

log(𝑙𝑜𝑔(𝑋𝑖𝑗 + 1) + 1) and half-sigmoid function (𝛿𝑖𝑗 = log 𝑂𝑅𝑖𝑗 = 𝑋𝑖𝑗/√1 + 𝑋𝑖𝑗
2  ). We used 

two different dose distribution: 𝑋𝑖𝑗~Unif(1 ,10) and 𝑋𝑖𝑗~𝜒2(2). We investigated two different 

knot positions; at the 10%, 50% and 90% quantiles (1,5 and 9 for the uniform dose and 0.2, 1.3 

and 4.3 for the 𝜒2  distribution) and then at doses 0, 1 and 3 which is where changes in the 

shape are taking place. This results in 8 scenarios for setting 2.  

The other four settings in Table 2 result from modifying setting 1. First, we assumed 

smaller trials by generating the sample size per dose as 𝑛𝑖𝑗~𝑈𝑛𝑖𝑓(20, 100). Second, we 

assumed fewer trials; 𝑛𝑠 = 8  𝑜𝑟 16. Third, we explored the case of having partially 

overlapping dose levels across trials, by generating the doses in half of studies from 𝑈𝑛𝑖𝑓(1, 6) 

and the other half from 𝑈𝑛𝑖𝑓(4, 10). Finally, we consider the case where doses are discrete by 

sampling from a list of integer values.  

The Bayesian models were estimated using 1 × 105 iterations with three chains, with a 

burn-in of 1 × 104 and a thinning of one. Given that the simulated data was produced assuming 

𝜌 = 0, we did not use bivariate distributions but two independent distributions for 𝛽1𝑖 and 𝛽2𝑖  . 

Each scenario was studied in 1000 simulations. We used the dosresmeta command to fit the 

frequentist model [32]. 

For each method, we estimated the mean bias in the regression coefficients 𝐵1 and 𝐵2 

and 𝜏 as the difference between the true coefficient and the corresponding mean estimated 

value. We computed the mean squared error (MSE) as the sum of the squared bias and the 

variance of the estimates to quantify the variation in sample estimates. As graphical output is 

difficult to monitor in a simulation study, the convergence of the MCMC was quantified here 

only by computing the Gelman statistics √𝑅̂; when √𝑅̂ ≈ 1 the MCMC converges. 

Additionally, we report the coverage for each estimate as the proportion of credible intervals 
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that captured the true value. We computed the power to detect 𝐵𝑘 ≠ 0 when the estimated 

credible interval does not include zero and the mean of the coefficients’ standard error 

(SE2mean). Finally, we report the Monte Carlo standard error (MCse) to quantify the 

uncertainty of all the quantities presented above. We present the results from OR for bias and 

MSE in the main text whereas the remaining results are presented in the Appendix.   

3.2 Simulation Results 

 

Setting 1 

Appendix Table 1-3 present the results from the eight scenarios of the first setting for 

logORs using splines. Appendix Figure 2 shows the average estimated curves for scenarios 2 

to 4 (results from scenarios 6 to 8  provide similar conclusions to those in Appendix Figure 2; 

scenarios 1 and 5 refer to no dose-response association and are not presented in the figure). 

The three estimated dose-response lines are indistinguishable and all three models perform 

very well (Appendix Table 1-3).  The binomial Bayesian model has a slightly lower bias in the 

coefficients than the normal Bayesian and the frequentist approach in all scenarios. The spline 

coefficients  𝐵2  exhibit more bias and are less accurate than those of 𝐵1. For both binomial 

and normal Bayesian models, larger heterogeneity 𝜏 = 0.01 resulted in less bias than when 

𝜏 = 0.001. The coverage of all estimates exceeds 90%. The power to detect a nonzero linear 

coefficient 𝐵1 ranges between 85% and 93% when 𝐵1 = 0.04 and 100% for 𝐵1 = 0.2. The 

power to detect a non-linear association, ranges between 20% and 28% when 𝐵2 = 0.03 and 

is 100% when  𝐵2 = − 0.2.  The MCMC converged in all simulations as √𝑅̂ < 1.015. Finally, 

the largest MCse of bias is 9 × 10−4.  The results for logRR agree with the ones based on 

logOR and are presented in Appendix Figure 15 and Appendix Table 7-9.   

Setting 2 

Simulating under different shapes we found that estimations from the three models improves 

when knots are placed in dose ranges where the risk changes a lot compared when we set knots 

at 10%, 50% and 90% percentiles as Harrell suggested [24]. (see Figure 1 and Appendix Figure 

6.)  

Settings 3-6 

Modifications of setting 1 resulted in similar very good performance of all three 

models, with one exception.  We found that the binomial Bayesian model gives less biased 

dose-response curve estimates compared with the normal Bayesian and frequentist models 

(see Table 3, Figure 1 Simulation results for the half-sigmoid model (panels a, c) and the log-log dose 
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model (panels b, d) estimated using restricted cubic splines (setting 2 in Table 2). Knots are placed in 10%, 50% 

and 90% quantiles in panels a and b and at doses 0, 1, 3 in panels c and d. The doses are generated from Unif(0, 

10). 

Figure 2 and Appendix Table 4-6). Overall, the spline coefficients  𝐵2  are more biased 

and less accurate than those of 𝐵1. For both binomial and normal Bayesian models, 

heterogeneity was estimated with considerably more bias than in setting 1 where larger studies 

have been synthesized (see Table 3 and Appendix Table 4-6).  

Additional results from setting 3 are presented in Appendix Table 4-6. The coverage of 

all estimates exceeds 87%; coverage with the binomial Bayesian model is slightly larger than 

with the normal likelihood models. The power to detect a nonzero linear coefficient 𝐵1 ranges 

from 21% to 40% when 𝐵1 = 0.04 and is 100% for 𝐵1 = 0.2. The power to detect a non-linear 

association, ranges from 4.5% to 7.6% when 𝐵2 = 0.03 and from 85% to 88% when  𝐵2 =

− 0.2.  The convergence of MCMC is achieved in all simulations as √𝑅̂ < 1.02. Finally, the 

largest MCse of bias is 2.6 × 10−3.   

In settings 4, 5 and 6, the three estimated dose-response curves are indistinguishable and 

unbiased see Appendix Figure 3 , Appendix Figure 4 and Appendix Figure 5.  

4 Dose-response for antidepressants in major depression 

We illustrate the methods by synthesizing the dose-response association reported in 60 

randomized controlled trials (145 arms, 15,174 participants) examining the efficacy and 

tolerability of various doses of serotonin-specific reuptake inhibitor (SSRI) antidepressant 

drugs [33]. Using a previously validated formula, we first transformed the dosages of the 

different antidepressants into fluoxetine-equivalents [33]. The response to antidepressant is 

defined as 50% reduction in symptoms. We estimated the dose-response relationship using 

restricted cubic spline with three knots placed at fixed percentiles of the dose: 10, 20, and 50 

mg/day.  

The results are displayed in Table 4 and the dose-response curves based on the three 

approaches are shown in Appendix Figure 17. The estimated correlation indicates a substantial 

uncertainty. The two Bayesian models agree to a large extent with the frequentist approach in 

the estimated linear and spline coefficients and in the precision of the estimations, as shown in 

results in Table 4. There are immaterial differences between the frequentist and the Bayesian 

models in the estimation of heterogeneity and correlation 𝜌; the latter is estimated with large 

uncertainty in Bayesian models.  
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In Figure 3 we present the absolute response using the binomial Bayesian model. The 

response in the placebo arm was estimated at 37.6% (blue line in Figure 3). We conducted 

meta-analysis to synthesize the evidence from studies of each drug separately, and we also 

present the absolute for all drugs together. The precision in the dose-response curve is high for 

lower doses and increases for higher doses, as less data are available.  

We also fit the clustered dose-response model where studies have first being synthesised 

within drug and then across drugs using the binomial likelihood. The coefficients 𝐵1, 𝐵2 were 

very similar to those estimated from the model that ignores clusters (see Table 4).  The within-

drug variance 𝜏𝑤𝑖𝑡ℎ𝑖𝑛  was estimated 0.0076, a bit smaller than the total heterogeneity from the 

binomial model (𝜏 = 0.0087). There were some differences between the eight drugs as 

indicated from the 𝜏𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.0050 . However, the dose-response shape is practically 

identical to that of the model that ignores the drug clustering. Finally, the within and between 

cluster correlations are estimated with large uncertainty like in all models. 

We examined the convergence of MCMC for all Bayesian models. Overall, convergence 

is achieved for all the estimated parameters of the three models, see Appendix Table 11-16 and 

Appendix Figure 18-30.  

5 Discussion 

In this paper, we present a hierarchical dose-response meta-analysis model in a Bayesian 

framework. At the first level, the dose-response relationship is fitted within each study. Then 

the curves are combined to get the average dose-response. An additional pooling level can be 

added, if there are different clusters of exposure or drugs. The exact likelihood of the outcome 

(binomial or normal) can be employed if arm-level data is available.  

We preformed extensive simulations under different scenarios, in the majority of which 

the three tested models (binomial Bayesian, normal Bayesian and one-stage frequentist model) 

perform equally well and provide unbiased results.  When the study sample size is small, we 

showed that the binomial Bayesian model performs better than the Bayesian or frequentist 

models that use normal likelihood. This is to be expected because with small sample size the 

observed logORs are poorly approximated by the normal distribution. One could use a logistic 

regression to model dose-response within a study; that would provide results equivalent to the 

binomial Bayesian approach. However, to the best of our knowledge, this approach has not 

been implemented in any frequentist software. When restricted cubic splines are used to model 

the association, we showed that prior knowledge about the the underlying dose-response shape 

can direct the choice of the knot location and improve estimation.  
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Some articles have previously described methods for dose-response meta-analyses 

[7][8][11][35] [36]. Langford et al.  proposed four methods to conduct dose-response meta-

analysis in a  frequentist setting [35]. The first two methods focus on the synthesis of arm-level 

responses which is undesirable in a meta-analysis context, in particular when randomized trials 

are synthesized. Method 3 is an one-stage approach; the contrasts between the arms are treated 

as observations to fit the dose-response curve using weighted least squares. Method 4 is a two-

stage approach. In the first stage, all possible dose contrasts and their variances are estimated 

using network meta-analysis (where doses are placed in the network nodes). In the second 

stage, the obtained dose-specific estimates are used to fit the dose-response curve. Although 

Methods 3 and 4 are proposed to conduct the analysis based on contrasts, they ignore the 

correlations between them.  

 Wu et al. proposed a Bayesian hierarchical dose-response meta-analysis approach [36]. 

The approach is aiming to examine the effects of various drugs extracted from living organism 

(biologics). The analysis was conducted assuming Emax and linear dose-response shapes. Such 

shapes are common in dose-findings trials. Our approach is, however, more general, in the 

sense that it can accommodate any dose-response shape. Our approach, additionally, considers 

both random- and common-effect models, whereas only the latter is considered by Wu et al. 

Allowing for heterogeneity between studies can be crucial as illustrated by Shi et. al. who 

showed that the associations between breast cancer and alcohol consumption gets substantially 

weaker when the heterogeneity is incorporated in the model [37].  

Among the limitations common to all Bayesian approaches, two are particularly 

challenging for our model [12, 17]. First, for some scenarios, the estimation can be sensitive to 

the prior choice [38]. In these cases, sensitivity analysis is recommended with either different 

prior distributions or by varying the characteristics (hyperparameters) of the specific prior 

distribution. This is particularly important for the heterogeneity parameter when we have few 

studies or dose levels [38]. Second, time-consuming, intensive computation may be required 

until MCMC convergence is achieved. In this context, we emphasize the importance of 

investigating the convergence of MCMC using CODA approaches (e.g. as those presented in 

our appendix).  Furthermore, the usual challenges of dose-response meta-analysis apply, 

including ambiguity in the categorisation of the exposure, the reporting of different categories 

by different studies or of open-ended categories [39]. These issues are discussed in detail 

elsewhere [18]. Finally, important considerations are to be made, that are specific to the data 

and context, when the (often continuous) dose has been categorized [40].  
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Simulations under a half-sigmoid and log dose-response shape revealed that an agnostic 

placement of the knots (e.g. in quantiles) might lead to biased and very imprecise estimation. 

Govindarajulu et al. also showed that restricted cubic splines can’t always capture the true 

shape [41]. Restricted cubic splines can perform poorly when most of the change in response 

is occurring in a narrow exposure interval and knots are located far away from it. In such 

scenario, subject-matter knowledge can inform the generation of restricted cubic splines by 

placing the knots where the investigator can anticipate most of the effect to occur, while 

keeping constant the number of parameters to be estimated. In meta-analysis of dose-response, 

investigators often know or suspect the underlying dose-response shape or at least the range of 

doses where the outcome is changing a lot. This should be incorporated in in the assumed shape 

of the modelled dose-response association (e.g. by choosing a piecewise constant) or by 

locating the knots where changes are expected. In our example of antidepressants, psychiatrists 

would be interested about the shape in doses lower than 50mg fluoxetine-equivalent and 

changes in response are expected to occur between 20 and 40 mg (the minimum therapeutic 

dose). Therefore, knots have to be placed at these dosages.  

A strength of our Bayesian approach is its flexibility. We were able to evaluate whether 

studies that examine the same drug are more similar than studies examining different drugs by 

using an extension of our model that adds a layer in the hierarchy according to the specific kind 

of antidepressant that was studied. We were also able to estimate the absolute response to each 

dose. Such estimates can also be obtained in a frequentist setting by using best linear unbiased 

prediction (BULPs) in mixed models [42, 43]. However, the process is easier in a Bayesian 

framework, which also allows the use of external data to estimate the outcome at zero dose. 

The approach will be particularly valuable in the context of policy- and decision-making where 

the absolute event rates play a more important role than the relative treatment effects.  

The hierarchical structure of the model allows the borrowing of strength across studies 

[14]. Studies that report only one dose-specific effect can thus be included and a nonlinear 

dose-response model fitted. This is also possible in a frequentist setting using the one-stage 

approach, however, our model can be extended to separate between the heterogeneity due to 

variability in dose-response shape and residual between-study heterogeneity. The latter can be 

explored by including covariates that may explain this residual variability; that could lead into 

a dose-response meta-regression. Our model could also be extended to multiple treatments, 

thus offering an alternative to published network meta-analysis models  [44], or it could be 

used to model simultaneously several outcomes with similar dose-response shapes. Another 

potential extension, which we have implemented in our paper, is accounting for cluster of the 
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exposure in estimating the dose-response shape. Finally, external knowledge can be 

incorporated, for example, evidence from observational studies. The use of observational data 

will be particularly relevant when assessing long term outcomes, as the majority of RCTs, in 

psychiatry and elsewhere, are of relatively short duration [17].  

In conclusion, we suggest that the Bayesian model with the binomial likelihood could be 

the default approach as it outperforms the alternative models when the synthesizes studies are 

small. Prior knowledge about the underlying association should be incorporated in the model 

by defining an appropriate dose-response shape or by locating knots at doses where the 

outcome is expected to change a lot.   
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Table 1 Notation in aggregated-level data in dose-response meta-analysis 

𝑖 =  1, … , 𝑛𝑠 Study id 

𝑗 = 1, … , 𝑛𝑑𝑖 Dose levels in study 𝑖 

𝑋𝑖𝑗  Dose level 𝑗 in study 𝑖  

𝑋𝑖0 Reference dose in study 𝑖 

𝑟𝑖𝑗  Number of events in dose 𝑗 within study 𝑖 

𝑛𝑖𝑗  Sample size in dose 𝑗 within study 𝑖 

𝑌𝑖𝑗  Within study 𝑖,  the relative effect (on a ln-scale) of dose 𝑗 

contrasted to the effect in the reference dose (𝑋𝑖0) e.g. log odds 

ratio 

𝒀𝒊 = (𝑌𝑖1, 𝑌𝑖2 , … , 𝑌𝑖(𝑛𝑑𝑖−1)) Vector of all dose-specific (ln) relative effects in study 𝑖 

𝑘 = 1, … 𝑝 

Number of dose transformations associated with the dose-

response shape. For a linear shape 𝑝 = 1 and for quadratic and 

restricted cubic splines 𝑝 = 2 

𝑐 = 1,2, … , 𝐶 Exposure clusters 
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Table 2 Description of simulation settings  

 

(added in a separate file)  
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Table 3. Simulations scenarios in setting 3  in Table 2 for a spline dose-response association assuming random 

effects for B1,  B2. We assume 20 trials reporting aggregated-level data with three dose-levels each where the 

sample size is generated from Unif(20, 100). The bias and MSE are reported for linear coefficient, spline 

coefficient and their common heterogeneity (a) B1 (b) B2 (c) τ, respectively. Bias and MSE are divided by 

𝟏𝟎𝟑. 

 

(a) Estimated 𝐵1  

 True values  Binomial 
Bayesian 

 Normal 
Bayesian 

 One-stage 
(frequentist) 

Scenario 𝜏 𝐵1 𝐵2   Bias MSE  Bias MSE  Bias MSE 

S1 0.001 0 0  2.1 0  23.7 0  22.0 0 

S2 0.001 0.04 0  1.7 0  21.4 0  20.1 0 

S3 0.001 0.1 0.03  2.1 0  20.3 0  18.9 0 

S4 0.001 0.2 -0.2  3.9 0  13.4 0.01  17.2 0.01 

S5 0.01 0 0  2.2 0  24.7 0  23.1 0 

S6 0.01 0.04 0  4.3 0.01  24.6 0.01  23.3 0.01 

S7 0.01 0.1 0.03  4.5 0.01  21.7 0.01  20.2 0.01 

S8 0.01 0.2 -0.2  4.2 0  14.5 0.01  17.6 0.01 

 

(b) Estimated 𝐵2 

 True values  Binomial 
Bayesian 

 Normal 
Bayesian 

 One-stage 
(frequentist) 

Scenario 𝜏 𝐵1 𝐵2   Bias MSE  Bias MSE  Bias MSE 

S1 0.001 0 0  -7.5 6.0 
  

-35.8 7.0 
  

-30.1 7.5 

S2 0.001 0.04 0  -2.5 5.2 

 

-31.0 6.3 

 

-27.0 7.2 

S3 0.001 0.1 0.03  2.2 4.4 

 

-28.3 5.8 

 

-22.6 6.2 

S4 0.001 0.2 -0.2  -3.2 3.6 

 

-12.2 4.5 

 

-19.6 5.2 

S5 0.01 0 0  -5.7 6.0 

 

-35.7 6.9 

 

-30.7 7.8 

S6 0.01 0.04 0  -5.9 6.3 

 

-34.5 7.8 

 

-29.8 9.0 

S7 0.01 0.1 0.03  -4.7 4.8 

 

-32.6 6.6 

 

-26.9 6.7 

S8 0.01 0.2 -0.2  -2.3 4.3 
  

-14.4 5.5 
  

-20.4 6.3 

 

(c) Estimated 𝜏 

 True values  Binomial 

Bayesian 
 Normal 

Bayesian 
 

Scenario 𝜏 𝐵1  𝐵2   Bias MSE  Bias MSE  

S1 0.001 0 0  32.7 1.2 
  

37.3 1.7 
  

S2 0.001 0.04 0  32.0 1.2 

 

38.0 1.8 

 

S3 0.001 0.1 0.03  28.7 1.0 

 

36.7 1.7 
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S4 0.001 0.2 -0.2  28.4 0.9 

 

37.0 1.8 

 

S5 0.01 0 0  25.5 0.9 

 

30.5 1.3 

 

S6 0.01 0.04 0  22.7 0.7 

 

30.1 1.3 

 

S7 0.01 0.1 0.03  20.1 0.5 

 

28.8 1.2 

 

S8 0.01 0.2 -0.2  21.2 0.6 
  

29.9 1.4 
  

 

 

Table 4  Dose-response between antidepressants and response to drug.  The model is fitted with restricted cubic 

splines and assuming random dose-response coefficients. Dose is measured as fluoxetine-equivalent in mg/day. 

 

 

 

Figures  
 

Figure 1 Simulation results for the half-sigmoid model (panels a, c) and the log-log dose model (panels b, d) 

estimated using restricted cubic splines (setting 2 in Table 2). Knots are placed in 10%, 50% and 90% quantiles 

in panels a and b and at doses 0, 1, 3 in panels c and d. The doses are generated from Unif(0, 10). 

Figure 2 Simulation results from studies with arm sample size generated from Unif(20, 100) (setting 3 in Table 

2). True dose-response curves generated from restricted cubic splines (black) along with the three estimated dose-

response curves. The panels correspond to scenarios S5-S8 in Table 3. 

Figure 3 Dose-response meta-analysis of each SSRI and meta-analysis of all drugs with transformed doses (to 

fluoxetine-equivalent). The blue line represents the response to placebo as obtained by a me-analysis of all 
placebo-arms and its 95% credible region. The red line depicts the absolute response to each antidepressant by 

dose estimated using the binomial Bayesian model. The shaded area represents the 95% credible region around 

the absolute dose-response curve.  

 

 

  

 
Binomial Bayesian Normal Bayesian one-stage (frequentist) Binomial Bayesian with drug 

clusters 
 

Mean SD Mean SD Mean SE Mean SD 

𝐵1 0.0214 0.0024 0.0210 0.0037 0.0209 0.0025 0.0213 0.0036 

𝐵2 -0.0397 0.0070 -0.0396 0.0085 -0.0376 0.0060 -0.0387 0.0079 

𝜏 0.0087 0.0028 0.0072 0.0031 𝜏1 = 0.0103 

𝜏2 = 0.0115 

-    𝜏𝑤𝑖𝑡ℎ𝑖𝑛 = 0.0076 

𝜏𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.0050 

0.0028 

0.0040 

𝜌 -0.4782 0.4952 -0.2488 0.5652 -1 - 𝜌𝑤𝑖𝑡ℎ𝑖𝑛 = −0.3611 

  𝜌𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = −0.1064 

0.5153 

0.5508 
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Appendix 
 

Tables captions 
 
Appendix Table 1 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. See 1st row in Table 2. The results for the linear coefficient B1. 

 

Appendix Table 2 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. See 1st row in Table 2. The results for the spline coefficient B2.  

 

Appendix Table 3 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. See 1st row in Table 2.The results for the common heterogeneity 𝜏. 

Appendix Table 4 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for 

a spline dose-response association with random effects coefficients. We assume 20 trials reporting aggregated-

level data with three dose-levels each where sample size is generated from 𝑈𝑛𝑖𝑓(20, 100) . See 3rd row in Table 

2. The results for the linear coefficient 𝐵1. 

Appendix Table 5 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for 

a spline dose-response association with random effects coefficients. We assume 20 trials reporting aggregated-

level data with three dose-levels each where sample size is generated from 𝑈𝑛𝑖𝑓(20, 100).  See 3rd row in Table 

2. The results for the spline coefficient 𝐵2 . 

Appendix Table 6 Assuming odds ratio (OR) as a measure of the treatment effect, 8 scenarios are simulated for 
a spline dose-response association with random effects coefficients. We assume 20 trials reporting aggregated-

level data with three dose-levels each where sample size is generated from 𝑈𝑛𝑖𝑓(20, 100). See 3rd row in Table 

2. The results for the common heterogeneity 𝜏. 

Appendix Table 7 Assuming risk ratio (RR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. The results for the linear coefficient 𝐵1 . 

 

Appendix Table 8 Assuming risk ratio (RR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. The results for the spline coefficient 𝐵2. 

Appendix Table 9 Assuming risk ratio (RR) as a measure of the treatment effect, 8 scenarios are simulated for a 

spline dose-response association with random effects coefficients. We assume 40 trials reporting aggregated-level 

data with three dose-levels each. The results for the common heterogeneity 𝜏. 

Appendix Table 10 Results of the three approaches regarding the estimation of linear and spline coefficients 𝐵1 

and 𝐵2 , respectively, in addition to their common heterogeneity 𝜏. These results are based on simulated 

antidepressant dataset from restricted cubic spline dose-response meta-analysis model, the coefficients are set as 

the frequentist estimation that are displayed in Table 3. 

Appendix Table 11 For binomial Bayesian model, the estimated number of burn-in, number of iterations and I 

factor on each chain is presented. 

Appendix Table 12 For normal Bayesian model, the estimated number of burn-in, number of iterations and I factor 

on each chain is presented. 

Appendix Table 13 For binomial Bayesian model with drug-specific class, the estimated number of burn-in, 

number of iterations and I factor on each chain is presented. 

Appendix Table 14 For binomial Bayesian model, the p-value of the stationarity test and halfwidth test and the 

estimated posterior mean of the stationary part of chain is displayed. 
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Appendix Table 15 For normal Bayesian model, the p-value of the stationarity test and halfwidth test and the 

estimated posterior mean of the stationary part of chain is displayed. 

Appendix Table 16 For binomial Bayesian model with drug-specific class, the p-value of the stationarity test and 

halfwidth test and the estimated posterior mean of the stationary part of chain is displayed. 
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Appendix Figures  
 

Appendix Figure 1 The underlying dose-response curve in simulations with its boundaries as true curve ± 2*τ 

(dotted lines) assuming small (red) and large (blue) values for heterogeneity τ. 

 

Appendix Figure 2 Dose-response associations corresponding to scenarios 2-4 are in upper three panels. The 
lower three panels are a snapshot in the lager dose range 8-10 to investigate the slight differences between the 

three approaches.  

 

Appendix Figure 3 Dose-response associations corresponding to the fourth simulation setting in Table 2. In that 

setting, we generated data with (a) 8 and (b) 16 trials. 

Appendix Figure 4 Dose-response associations corresponding to the fifth simulation setting in Table 2. In that 

setting, we generated the doses of half of the studies from Unif(1,6) and in the other half  from Unif(4,10). 

Appendix Figure 5 Dose-response associations corresponding to the sixth simulation setting in Table 2. In that 

setting, we generated discrete doses using sample() function in R. 

Appendix Figure 6 Simulation results for the half-sigmoid model (a,c) and the log-dose model (b,d) as the true 

dose-response curve (black) and the three estimated dose-response curves using restricted cubic splines (see 
Table 1). Knots are placed in 10%, 50% and 90% quantiles (doses 0.2, 1.3 and 4.3) in panels a and b and and at 

doses 0, 1, 3 in panels c and d.  The doses are generated from 𝜒2(2). See the second setting in Table 2. 

 

Appendix Figure 7 Histogram for B̂1 in a simulation study based on odds ratio (OR)  for the binomial dose-

response meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 (b) 0 (c) 0.03 (d) -

0.2 and true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2 (green line)  where in the first and the second columns the true 

heterogeneity is set as τ = 0.001 and τ = 0.01, respectively. 

 

Appendix Figure 8 Histogram for B̂2 in a simulation study based on odds ratio (OR)  for the binomial dose-

response meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 (b) 0 (c) 0.03 (d) -

0.2 (green line)  and true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2  where in the first and the second columns the true 

heterogeneity is set as τ = 0.001 and τ = 0.01, respectively. 

 

Appendix Figure 9 Histogram for B̂1 in a simulation study based on odds ratio (OR)  for the normal dose-response 

meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 (b) 0 (c) 0.03 (d) -0.2 and 

true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2 (green line) where in the first and the second columns the true heterogeneity 

is set as τ = 0.001 and τ = 0.01, respectively. 

 

Appendix Figure 10 Histogram for 𝐵̂2in a simulation study based on odds ratio (OR) for the normal dose-response 

meta-analysis model of restricted cubic spline in various scenarios for true  𝐵2= (a) 0 (b) 0 (c) 0.03 (d) -0.2 (green 

line) and true 𝐵1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2  where in the first and the second columns the true heterogeneity is 

set as 𝜏 = 0.001 and 𝜏 = 0.01, respectively. 

Appendix Figure 11 Histogram for τ̂ in a simulation study based on odds ratio (OR) for the binomial dose-response 

meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 (b) 0 (c) 0.03 (d) -0.2 and 

true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2  where in the first and the second columns the true heterogeneity is set as 

τ = 0.001 and τ = 0.01 (green line), respectively. 

 

Appendix Figure 12 Histogram for τ̂ in a simulation study based on odds ratio (OR) for the normal dose-response 

meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 (b) 0 (c) 0.03 (d) -0.2 and 

true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2  where in the first and the second columns the true heterogeneity is set as 

τ = 0.001 and τ = 0.01 (green line), respectively. 

 

Appendix Figure 13 Histogram for B̂1 in a simulation study based on odds ratio (OR) for the one-stage 

(frequentist) dose-response meta-analysis model of restricted cubic spline in various scenarios for true B2= (a) 0 

(b) 0 (c) 0.03 (d) -0.2 and true B1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2 (green line)  where in the first and the second 

columns the true heterogeneity is set as τ = 0.001 and τ = 0.01, respectively. 
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Appendix Figure 14 Histogram for 𝐵̂2  in a simulation study based on odds ratio (OR) for the one-stage 

(frequentist) dose-response meta-analysis model of restricted cubic spline in various scenarios for true 𝐵2= (a) 0 

(b) 0 (c) 0.03 (d) -0.2 (green line) and true 𝐵1= (a) 0 (b) 0.04 (c) 0.1 (d)0.2  where in the first and the second 

columns the true heterogeneity is set as 𝜏 = 0.001 and 𝜏 = 0.01, respectively. 

Appendix Figure 15 Dose-response associations corresponding to scenarios 2-4 are in the above three panels. The 

lower three panels are a snapshot in the lager dose range 8-10 to identify the slight differences between the three 

approaches. In simulations and model, risk ratio (RR) has been used as a measure of the treatment effect. See 1st 

row in Table 2. 

 

Appendix Figure 16 The estimated dose-response curves of the 60 randomized clinical trials that studied the 

effectiveness of antidepressant drugs. 

 

Appendix Figure 17 The relative dose-response associations estimated with the three approaches; binomial 

Bayesian, normal Bayesian and one-stage (frequentist) approaches.  Analyses based on 60 randomized clinical 

trials of SSRIs. Doses are transformed to fluoxetine-equivalent dose. 

Appendix Figure 18 The distribution of  B̂1, B̂2 ,τ̂ and  ρ ̂of the binomial Bayesian model. 

 

Appendix Figure 19 The distribution of  B̂1, B̂2 ,τ̂ and  ρ̂ of the normal Bayesian model. 

 

Appendix Figure 20 The distribution of  B̂1, B̂2 , τ̂within  , τ̂between , ρ̂within and  ρ̂between of the binomial Bayesian 

model with drug-specific class. 

 

Appendix Figure 21  The trace plot of  B̂1, B̂2 ,τ̂ and  ρ̂ of the binomial Bayesian model. 

 

Appendix Figure 22  The trace plot B̂1, B̂2 ,τ̂ and  ρ̂   of the normal Bayesian model. 

 

Appendix Figure 23  The trace plot of  B̂1, B̂2 , τ̂within , τ̂between , ρ̂within and  ρ̂between of the binomial Bayesian 

model with drug-specific class. 

 

Appendix Figure 24  The Geweke plot for each chain of  B̂1, B̂2 ,τ̂ and  ρ ̂ of the binomial Bayesian model. 

 

Appendix Figure 25   The Geweke plot for each chain of  B̂1, B̂2 ,τ̂ and  ρ ̂ of the normal Bayesian model. 

 

Appendix Figure 26  The Geweke plot for each chain of  B̂1, B̂2 and τ̂within  of the binomial Bayesian model with 

drug-specific class. 

 

Appendix Figure 27  The Geweke plot for each chain τ̂between , ρ̂within and  ρ̂between of the binomial Bayesian 

model with drug-specific class. 

 

Appendix Figure 28 For binomial Bayesian model, Gelman-Rubin plot of the shrink factor √R̂ over the last 

iterations is displayed  B̂1, B̂2 ,τ̂ and  ρ ̂.  
 

Appendix Figure 29  For normal Bayesian model, Gelman-Rubin plot of the shrink factor √R̂ over the last 

iterations is displayed  B̂1, B̂2 ,τ̂ and  ρ ̂. 
 

Appendix Figure 30 For binomial Bayesian model with drug-specific class, Gelman-Rubin plot of the shrink 

factor √R̂ over the iterations is displayed for  B̂1, B̂2 , τ̂within , τ̂between , ρ̂within and  ρ̂between. 
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