4,254 research outputs found

    Succinct Malleable NIZKs and an Application to Compact Shuffles

    Get PDF
    Depending on the application, malleability in cryptography can be viewed as either a flaw or — especially if sufficiently understood and restricted — a feature. In this vein, Chase, Kohlweiss, Lysyanskaya, and Meiklejohn recently defined malleable zero-knowledge proofs, and showed how to control the set of allowable transformations on proofs. As an application, they construct the first compact verifiable shuffle, in which one such controlled-malleable proof suffices to prove the correctness of an entire multi-step shuffle. Despite these initial steps, a number of natural open problems remain: (1) their construction of controlled-malleable proofs relies on the inherent malleability of Groth-Sahai proofs and is thus not based on generic primitives; (2) the classes of allowable transformations they can support are somewhat restrictive; and (3) their construction of a compactly verifiable shuffle has proof size O(N 2 + L) (where N is the number of votes and L is the number of mix authorities), whereas in theory such a proof could be of size O(N + L). In this paper, we address these open problems by providing a generic construction of controlledmalleable proofs using succinct non-interactive arguments of knowledge, or SNARGs for short. Our construction has the advantage that we can support a very general class of transformations (as we no longer rely on the transformations that Groth-Sahai proofs can support), and that we can use it to obtain a proof of size O(N + L) for the compactly verifiable shuffle

    Geographic variation, null hypotheses, and subspecies limits in the California Gnatcatcher: A response to McCormack and Maley

    Get PDF
    We interpreted the results of nuclear DNA sequencing to be inconsistent with the recognition of California Gnatcatcher (Polioptila californica) subspecies. McCormack and Maley (2015) suggested that our data did support 2 taxa, one of which was P. c. californica, listed as Threatened under the Endangered Species Act (ESA). We summarize here how 2 sets of researchers with access to the same data reached different conclusions by including different analyses. We included the southern subspecies’ boundary from the taxonomy of Atwood (1991), the taxonomic basis for the ESA listing, which resulted in an Analysis of Molecular Variance that provided no support for subspecies. In contrast, using a novel taxonomic hypothesis without precedent in the literature, McCormack and Maley (2015) found statistically significant FST values for 2 loci, which they suggested supports P. c. californica. We propose that our mitochondrial and nuclear data had sufficient power to capture geographical structure at either the phylogenetic (monophyly) or traditional ‘‘75% rule’’ level. McCormack and Maley (2015) suggested that finding an absence of population structure was a ‘‘negative result,’’ whereas we consider it to be the null hypothesis for a species with gene flow and no geographical barriers. We interpret the unstructured mtDNA and nuclear DNA trees, the STRUCTURE analysis supporting one group, the identification of just 26% (and not 75%) of individuals of P. c. californica with the most diagnostic nuclear locus, the overall GST that suggests that over 98% of the variation is explained by nontaxonomic sources, and the lack of evidence of ecological differentiation to indicate that P. c. californica is not a valid subspecies. McCormack and Maley (2015) suggest that statistically significant differences at 2 loci that explained ,6% of the genetic variation, and previous morphological data, support recognition of P. c. californica. If ornithology continues to recognize subspecies, these different standards should be reconciled

    PHYLOGEOGRAPHY OF THE CALIFORNIA GNATCATCHER (POLIOPTILA CALIFORNICA) USING MULTILOCUS DNA SEQUENCES AND ECOLOGICAL NICHE MODELING: IMPLICATIONS FOR CONSERVATION

    Get PDF
    An important step in conservation is to identify whether threatened populations are evolutionarily discrete and significant to the species. A prior mitochondrial DNA (mtDNA) phylogeographic study of the California Gnatcatcher (Polioptila californica) revealed no geographic structure and, thus, did not support the subspecies validity of the threatened coastal California Gnatcatcher (P. c. californica). The U.S. Fish and Wildlife Service concluded that mtDNA data alone were insufficient to test subspecies taxonomy. We sequenced eight nuclear loci to search for historically discrete groupings that might have been missed by the mtDNA study (which we confirmed with new ND2 sequences). Phylogenetic analyses of the nuclear loci revealed no historically significant groupings and a low level of divergence (GST = 0.013). Sequence data suggested an older population increase in southern populations, consistent with niche modeling that suggested a northward range expansion following the Last Glacial Maximum (LGM). The signal of population increase was most evident in the mtDNA data, revealing the importance of including loci with short coalescence times. The threatened subspecies inhabits the distinctive Coastal Sage Scrub ecosystem, which might indicate ecological differentiation, but a test of niche divergence was insignificant. The best available genetic, morphological, and ecological data indicate a southward population displacement during the LGM followed by northward range expansion, without the occurrence of significant isolating barriers having led to the existence of evolutionarily discrete subspecies or distinct population segments that would qualify as listable units under the Endangered Species Act

    Malleable Proof Systems and Applications

    Get PDF
    Malleability for cryptography is not necessarily an opportunity for attack, but in many cases a potentially useful feature that can be exploited. In this work, we examine notions of malleability for non-interactive zero-knowledge (NIZK) proofs. We start by defining a malleable proof system, and then consider ways to meaningfully control the malleability of the proof system, as in many settings we would like to guarantee that only certain types of transformations can be performed. We also define notions for the cases in which we do not necessarily want a user to know that a proof has been obtained by applying a particular transformation; these are analogous to function/circuit privacy for encryption. As our motivating application, we consider a shorter proof for verifiable shuffles. Our controlled-malleable proofs allow us for the first time to use one compact proof to prove the correctness of an entire multi-step shuffle. Each authority takes as input a set of encrypted votes and a controlled-malleable NIZK proof that these are a shuffle of the original encrypted votes submitted by the voters; it then permutes and re-randomizes these votes and updates the proof by exploiting its controlled malleability. As another application, we generically use controlled-malleable proofs to realize a strong notion of encryption security. Finally, we examine malleability in existing proof systems and observe that Groth-Sahai proofs are malleable. We then go beyond this observation by characterizing all the ways in which they are malleable, and use them to efficiently instantiate our generic constructions from above; this means we can instantiate our proofs and all their applications using only the Decision Linear (DLIN) assumption. Work done as an intern at Microsoft Research Redmon

    Structural validation of a realistic wing structure: the RIBES test article

    Get PDF
    Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however, focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community

    The complement system in renal homograft recipients

    Get PDF
    The whole serum complement and its components were studied in 24 recipients of 27 renal homografts. In 12 of 13 instances in which homograft rejection was diagnosed, it was accompanied by significant declines in CH50, IA50, C4, and C3 levels, and to a lesser degree in C1 and C2 levels. Fourteen patients had normal graft function during the postoperative course of study, and in 13 of the 14 the complement levels were within the normal range throughout. In two recipients with systemic lupus erythematosus, very low initial complement levels increased to normal levels following removal of the native kidneys, splenectomy, and the provision of a well-functioning homograft. Anticomplement activity and elevated titers of C1 and C3 inactivators were observed in some patients, but these did not correlate with the changes in CH50. The findings confirm that the complement system participates in renal homograft rejection. © 1972

    The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Full text link
    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxies, ~ 75%, are centrally concentrated, with a red bulge or spheroid, while blue galaxies usually have exponential profiles. However, there are two subclasses of red galaxies that are not bulge-dominated: edge-on disks and a second category which we term diffuse red galaxies (DIFRGs). The distant edge-on disks are similar in appearance and frequency to those at low redshift, but analogs of DIFRGs are rare among local red galaxies. DIFRGs have significant emission lines, indicating that they are reddened mainly by dust rather than age. The DIFRGs in our sample are all at z>0.64, suggesting that DIFRGs are more prevalent at high redshifts; they may be related to the dusty or irregular extremely red objects (EROs) beyond z>1.2 that have been found in deep K-selected surveys. (abridged)Comment: ApJ in press. 24 pages, 17 figures (12 color). The DEEP public database is available at http://saci.ucolick.org

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc−3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of ∼2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=−12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=−8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be ≤\le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax
    • …
    corecore