2,479 research outputs found

    Dimer-atom scattering between two identical fermions and a third particle

    Full text link
    We use the diagrammatic TT-matrix approach to analyze the three-body scattering problem between two identical fermions and a third particle (which could be a different species of fermion or a boson). We calculate the s-wave dimer-atom scattering length for all mass ratios, and our results exactly match the results of Petrov. In particular, we list the exact dimer-atom scattering lengths for all available two-species Fermi-Fermi and Bose-Fermi mixtures. In addition, unlike that of the equal-mass particles case where the three-body scattering TT-matrix decays monotonically as a function of the outgoing momentum, we show that, after an initial rapid drop, this function changes sign and becomes negative at large momenta and then decays slowly to zero when the mass ratio of the fermions to the third particle is higher than a critical value (around 6.5). As the mass ratio gets higher, modulations of the TT-matrix become more apparent with multiple sign changes, related to the "fall of a particle to the center" phenomenon and to the emergence of three-body Efimov bound states.Comment: 6 pages, 3 figures, and 2 table

    Observation of heteronuclear atomic Efimov resonances

    Full text link
    The Efimov effect represents a cornerstone in few-body physics. Building on the recent experimental observation with ultracold atoms, we report the first experimental signature of Efimov physics in a heteronuclear system. A mixture of 41^{41}K and 87^{87}Rb atoms was cooled to few hundred nanoKelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative. We attribute the two features at negative scattering length to the existence of two kind of Efimov trimers, namely KKRb and KRbRb.Comment: 4 pages, 4 figure

    N-body Efimov states from two-particle noise

    Get PDF
    The ground state energies of universal N-body clusters tied to Efimov trimers, for N even, are shown to be encapsulated in the statistical distribution of two particles interacting with a background auxiliary field at large Euclidean time when the interaction is tuned to the unitary point. Numerical evidence that this distribution is log-normal is presented, allowing one to predict the ground-state energies of the N-body system.Comment: Extended discussion of results; published versio

    Strong and radiative decays of the Ds0*(2317) meson in the DK-molecule picture

    Full text link
    We consider a possible interpretation of the new charm-strange meson Ds0*(2317) as a hadronic molecule - a bound state of D and K mesons. Using an effective Lagrangian approach we calculate the strong Ds0* to Ds pi0 and radiative Ds0* to Ds* gamma decays. A new impact related to the DK molecular structure of the Ds0*(2317) meson is that the presence of u(d) quarks in the D and K mesons gives rise to a direct strong isospin-violating transition Ds0* to Ds pi0 in addition to the decay mechanism induced by eta-pi0 mixing considered previously. We show that the direct transition dominates over the eta-pi0 mixing transition in the Ds0* to Ds pi0 decay. Our results for the partial decay widths are consistent with previous calculations.Comment: 22 pages, 4 figures, accepted for publication in Phys. Rev.

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Rare decay pi0 -> e+e-: theory confronts KTeV data

    Full text link
    Within the dispersive approach to the amplitude of the rare decay pi0 -> e+e- the nontrivial dynamics is contained only in the subtraction constant. We express this constant, in the leading order in (m_e/\Lambda)^2 perturbative series, in terms of the inverse moment of the pion transition form factor given in symmetric kinematics. By using the CELLO and CLEO data on the pion transition form factor given in asymmetric kinematics the lower bound on the decay branching ratio is found. The restrictions following from QCD allow us to make a quantitative prediction for the branching B(pi0 -> e+e-) =(6.2\pm 0.1)*10^{-8} which is 3\sigma below the recent KTeV measurement. We confirm our prediction by using the quark models and phenomenological approaches based on the vector meson dominance. The decays \eta -> l^+l^- are also discussed.Comment: 7 pages, 1 figur

    A non-perturbative method of calculation of Green functions

    Full text link
    A new method for non-perturbative calculation of Green functions in quantum mechanics and quantum field theory is proposed. The method is based on an approximation of Schwinger-Dyson equation for the generating functional by exactly soluble equation in functional derivatives. Equations of the leading approximation and the first step are solved for Ï•d4\phi^4_d-model. At d=1d=1 (anharmonic oscillator) the ground state energy is calculated. The renormalization program is performed for the field theory at d=2,3d=2,3. At d=4d=4 the renormalization of the coupling involves a trivialization of the theory.Comment: 13 pages, Plain LaTex, no figures, some discussion of results for anharmonic oscillator and a number of references are added, final version published in Journal of Physics

    Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions

    Get PDF
    We derive relations between various observables for N particles with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary external potential. Some of our results generalise known relations between large-momentum behavior of the momentum distribution, short-distance behavior of the pair correlation function and of the one-body density matrix, derivative of the energy with respect to the scattering length or to time, and the norm of the regular part of the wavefunction; in the case of finite-range interactions, the interaction energy is also related to dE/da. The expression relating the energy to a functional of the momentum distribution is also generalised, and is found to break down for Efimov states with zero-range interactions, due to a subleading oscillating tail in the momentum distribution. We also obtain new expressions for the derivative of the energy of a universal state with respect to the effective range, the derivative of the energy of an efimovian state with respect to the three-body parameter, and the second order derivative of the energy with respect to the inverse (or the logarithm in the two-dimensional case) of the scattering length. The latter is negative at fixed entropy. We use exact relations to compute corrections to exactly solvable three-body problems and find agreement with available numerics. For the unitary gas, we compare exact relations to existing fixed-node Monte-Carlo data, and we test, with existing Quantum Monte Carlo results on different finite range models, our prediction that the leading deviation of the critical temperature from its zero range value is linear in the interaction effective range r_e with a model independent numerical coefficient.Comment: 51 pages, 5 figures. Split into three articles: Phys. Rev. A 83, 063614 (2011) [arXiv:1103.5157]; Phys. Rev. A 86, 013626 (2012) [arXiv:1204.3204]; Phys. Rev. A 86, 053633 (2012) [ arXiv:1210.1784
    • …
    corecore