35 research outputs found

    A Synthesis of Global Urbanization Projections

    Get PDF
    This chapter reviews recent literature on global projections of future urbanization, covering the population, economic and physical extent perspectives. We report on several recent findings based on studies and reports on global patterns of urbanization. Specifically, we review new literature that makes projections about the spatial pattern, rate, and magnitude of urbanization change in the next 30–50 years. While projections should be viewed and utilized with caution, the chapter synthesis reports on several major findings that will have significant socioeconomic and environmental impacts including the following: By 2030, world urban population is expected to increase from the current 3.4 billion to almost 5 billion; Urban areas dominate the global economy – urban economies currently generate more than 90 % of global Gross Value Added; From 2000 to 2030, the percent increase in global urban land cover will be over 200 % whereas the global urban population will only grow by a little over 70 %. Our synthesis of recent projections suggest that between 50%–60% of the total urban land in existence in 2030 will be built in the first three decades of the 21st century. Challenges and limitations of urban dynamic projections are discussed, as well as possible innovative applications and potential pathways towards sustainable urban futures

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    Land Conservation Can Mitigate Freshwater Ecosystem Services Degradation Due to Climate Change in a Semiarid Catchment: The Case of the Portneuf River Catchment, Idaho, USA

    No full text
    There is increasing evidence of environmental change impacts on freshwater ecosystem services especially through land use and climate change. However, little is known about how land conservation could help mitigate adverse water-sustainability impacts. In this paper, we utilized the InVEST tool and the Residual Trends method to assess the joint effects and relative contributions of climate change and land conservation on freshwater ecosystem services in the Portneuf River catchment in Idaho, USA. We developed five hypothesized scenarios regarding gain and loss in the enrollment of Conservation Reserve Program (CRP), the largest agricultural land-retirement program in the U.S., plus riparian buffer and assessed their interactions with climate change. Results suggest that the realized water yield in the Portneuf River catchment would possibly be 56% less due to climate change and 24% less due to the decline of CRP enrollment. On the contrary, if CRP enrollment is promoted by ~30% and riparian buffer protection is implemented, the water supply reduction in the year 2050 could be changed from 56% to 26%, the total phosphorus (TP) and total nitrogen (TN) export would be reduced by 10% and 11%, and the total suspended sediment (TSS) reduced by 17%. This study suggests that increasing implementation of the CRP would likely preserve key freshwater ecosystem services and assist proactive mitigation, especially for semiarid regions vulnerable to changing climate conditions

    CO 2

    No full text

    Urban land teleconnections and sustainability

    No full text
    This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural–urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental “grand challenges” and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept
    corecore