7,762 research outputs found

    Weinberg power counting and the quark determinant at small chemical potential

    Full text link
    We construct an effective action for QCD by expanding the quark determinant in powers of the chemical potential at finite temperature in the case of massless quarks. To cut the infinite series we adopt the Weinberg power counting criteria. We compute the minimal effective action (~p^4), expanding in the external momentum, which implies the use of the hard thermal loop approximation. Our main result is a gauge invariant expression for the phase theta of the functional determinant in QCD, and recovers dimensional reduction in the high-temperature limit. We compute, analytically, in the range of p << 2 pi T, including perturbative and nonperturbative contributions, the latter treated within the mean field approximation. Implications for lattice simulations are briefly discussed.Comment: 5 pages, 2 figures. v2: title changed, expanded discussion and added example (calculation of at high temperature). Published in PR

    Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD

    Full text link
    We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.Comment: 4 pages, 6 figures; talk given by E. S. Fraga at 35th International Conference of High Energy Physics (ICHEP 2010), July 22-28, 2010, Paris, Franc

    1WHSP: an IR-based sample of \sim1,000 VHE γ\gamma-ray blazar candidates

    Get PDF
    Blazars are the dominant type of extragalactic sources at microwave and at γ\gamma-ray energies. In the most energetic part of the electromagnetic spectrum (E>100GeV) a large fraction of high Galactic latitude sources are blazars of the High Synchrotron Peaked (HSP) type, that is BL Lac objects with synchrotron power peaking in the UV or in the X-ray band. HSP blazars are remarkably rare, with only a few hundreds of them expected to be above the sensitivity limits of currently available surveys. To find these very uncommon objects, we have devised a method that combines ALLWISE survey data with multi-frequency selection criteria. The sample was defined starting from a primary list of infrared colour-colour selected sources from the ALLWISE all sky survey database, and applying further restrictions on IR-radio and IR-X-ray flux ratios. Using a polynomial fit to the multi-frequency data (radio to X-ray) we estimated synchrotron peak frequencies and fluxes of each object. We assembled a sample including 992 sources, which is currently the largest existing list of confirmed and candidates HSP blazars. All objects are expected to radiate up to the highest γ\gamma-ray photon energies. In fact, 299 of these are confirmed emitters of GeV γ\gamma-ray photons (based on Fermi-LAT catalogues), and 36 have already been detected in the TeV band. The majority of sources in the sample are within reach of the upcoming Cherenkov Telescope Array (CTA), and many may be detectable even by the current generation of Cherenkov telescopes during flaring episodes. The sample includes 425 previously known blazars, 151 new identifications, and 416 HSP candidates (mostly faint sources) for which no optical spectra is available yet. The full 1WHSP catalogue is on-line at http://www.asdc.asi.it/1whsp/ providing a direct link to the SED building tool where multifrequency data can be easily visualised

    A framework for the analysis of the security of supply of utilising carbon dioxide as a chemical feedstock

    Get PDF
    Recent developments in catalysts have enhanced the potential for the utilisation of carbon dioxide as a chemical feedstock. Using the appropriate energy efficient catalyst enables a range of chemical pathways leading to desirable products. In doing so, CO2 provides an economically and environmentally beneficial source of C1 feedstock, while improving the issues relating to security of supply that are associated with fossil-based feedstocks. However, the dependence on catalysts brings other supply chains into consideration, supply chains that may also have security of supply issues. The choice of chemical pathways for specific products will therefore entail an assessment not only of economic factors but also the security of supply issues for the catalysts. This is a multi-criteria decision making problem. In this paper, we present a modified 4A framework based on the framework suggested by the Asian Pacific Energy Research centre for macro-economic applications. The 4A methodology is named after the criteria used to compare alternatives: availability, acceptability, applicability and affordability. We have adapted this framework for the consideration of alternative chemical reaction processes using a micro-economic outlook. Data from a number of sources were collected and used to quantify each of the 4A criteria. A graphical representation of the assessments is used to support the decision maker in comparing alternatives. The framework not only allows for the comparison of processes but also highlights current limitations in the CCU processes. The framework presented can be used by a variety of stakeholders, including regulators, investors, and process industries, with the aim of identifying promising routes within a broader multi-criteria decision making process

    Nitrogen fluorescence in air for observing extensive air showers

    Full text link
    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th^{\rm{th}} Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.Comment: 12 pages, 17 figures, 2 tables, International Symposium on Future Directions in UHECR Physics, 13-16 February 2012, CERN, Geneva (Switzerland); the updated version corrects for a typo in Eq. (1
    corecore