261 research outputs found

    The d subunit plays a central role in human vacuolar H+-ATPases

    Get PDF
    The multi-subunit vacuolar-type H+-ATPase consists of a V1 domain (A–H subunits) catalyzing ATP hydrolysis and a V0 domain (a, c, c′, c″, d, e) responsible for H+ translocation. The mammalian V0 d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump’s central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk’s D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism

    The Forkhead Transcription Factor Foxi1 Is a Master Regulator of Vacuolar H+-ATPase Proton Pump Subunits in the Inner Ear, Kidney and Epididymis

    Get PDF
    The vacuolar H+-ATPase dependent transport of protons across cytoplasmic membranes in FORE (forkhead related) cells of endolymphatic epithelium in the inner ear, intercalated cells of collecting ducts in the kidney and in narrow and clear cells of epididymis require expression of several subunits that assemble into a functional multimeric proton pump. We demonstrate that expression of four such subunits A1, B1, E2 and a4 all co-localize with the forkhead transcription factor Foxi1 in a subset of epithelial cells at these three locations. In cells, of such epithelia, that lack Foxi1 we fail to identify any expression of A1, B1, E2 and a4 demonstrating an important role for the transcription factor Foxi1 in regulating subunit availability. Promoter reporter experiments, electrophoretic mobility shift assays (EMSA) and site directed mutagenesis demonstrate that a Foxi1 expression vector can trans-activate an a4-promoter reporter construct in a dose dependent manner. Furthermore, we demonstrate using chromatin immunoprecipitation (ChIP) assays that Foxi1-dependent activation to a large extent depends on cis-elements at position −561/−547 in the a4 promoter. Thus, we provide evidence that Foxi1 is necessary for expression of at least four subunits in three different epithelia and most likely is a major determinant for proper assembly of a functional vacuolar H+-ATPase complex at these locations

    Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe

    Get PDF
    Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V1 or F1 portion with proton (or Na+) flow in the membrane-embedded Vo or Fo portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole VoV1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. VoV1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the Vo rotor in T. thermophilus. Unlike F1 that undergoes 80°–40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and Vo adds further bumps through stator–rotor interactions outside and remote from V1

    Inhibition of Iron Uptake Is Responsible for Differential Sensitivity to V-ATPase Inhibitors in Several Cancer Cell Lines

    Get PDF
    Many cell lines derived from tumors as well as transformed cell lines are far more sensitive to V-ATPase inhibitors than normal counterparts. The molecular mechanisms underlying these differences in sensitivity are not known. Using global gene expression data, we show that the most sensitive responses to HeLa cells to low doses of V-ATPase inhibitors involve genes responsive to decreasing intracellular iron or decreasing cholesterol and that sensitivity to iron uptake is an important determinant of V-ATPase sensitivity in several cancer cell lines. One of the most sensitive cell lines, melanoma derived SK-Mel-5, over-expresses the iron efflux transporter ferroportin and has decreased expression of proteins involved in iron uptake, suggesting that it actively suppresses cytoplasmic iron. SK-Mel-5 cells have increased production of reactive oxygen species and may be seeking to limit additional production of ROS by iron

    Analysis of SEC9 Suppression Reveals a Relationship of SNARE Function to Cell Physiology

    Get PDF
    BACKGROUND:Growth and division of Saccharomyces cerevisiae is dependent on the action of SNARE proteins that are required for membrane fusion. SNAREs are regulated, through a poorly understood mechanism, to ensure membrane fusion at the correct time and place within a cell. Although fusion of secretory vesicles with the plasma membrane is important for yeast cell growth, the relationship between exocytic SNAREs and cell physiology has not been established. METHODOLOGY/PRINCIPAL FINDINGS:Using genetic analysis, we identified several influences on the function of exocytic SNAREs. Genetic disruption of the V-ATPase, but not vacuolar proteolysis, can suppress two different temperature-sensitive mutations in SEC9. Suppression is unlikely due to increased SNARE complex formation because increasing SNARE complex formation, through overexpression of SRO7, does not result in suppression. We also observed suppression of sec9 mutations by growth on alkaline media or on a non-fermentable carbon source, conditions associated with a reduced growth rate of wild-type cells and decreased SNARE complex formation. CONCLUSIONS/SIGNIFICANCE:Three main conclusions arise from our results. First, there is a genetic interaction between SEC9 and the V-ATPase, although it is unlikely that this interaction has functional significance with respect to membrane fusion or SNAREs. Second, Sro7p acts to promote SNARE complex formation. Finally, Sec9p function and SNARE complex formation are tightly coupled to the physiological state of the cell

    Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK

    Get PDF
    葡萄糖是生物中最基本、最主要的营养物质,它不仅是机体能量的主要来源,也是生物质合成的主要原料。因此,葡萄糖的水平对于生物体是极其重要的。然而,在生活中,体内葡萄糖水平的波动是十分常见的,这是因为我们不可能每时每刻都在摄入葡萄糖:睡一大觉、剧烈运动几个小时或者太忙了没时间吃饭,都会引起葡萄糖水平的显著下降。这时,机体能够触发一套有效的过程应对这类“不利情况”,其中最为关键的就是激活“代谢的核心调节”——AMPK。在葡萄糖水平下降时,被激活的AMPK能够迅速启动脂肪、蛋白质的分解代谢,关闭它们的合成代谢,从而起到维持机体的能量和物质代谢的平衡,弥补机体因葡萄糖不足引起的胁迫压力。那么,机体如何感受葡萄糖水平下降,并“传递”给AMPK使其激活呢?林圣彩教授课题组的这项研究正是发现了生理状态下机体感受葡萄糖水平的机制。通过研究他们发现,无论在不含葡萄糖的细胞培养条件下,还是在饥饿的低血糖的动物体内,都不能观测到AMP水平的上升,这充分说明了机体有一套尚不为人知的、独立于AMP的感应葡萄糖水平的机制。在进一步的研究中他们揭示了这一完整过程:葡萄糖水平下降将引起的葡萄糖代谢中间物——果糖1,6-二磷酸(fructose-1,6-bisphosphate)水平的下降,该过程进一步地被糖酵解通路上的代谢酶——醛缩酶(aldolase)感应,因为醛缩酶正是将含有6个碳原子的果糖1,6-二磷酸裂解成三碳糖的酶,一旦醛缩酶“吃不到”由葡萄糖衍生的果糖1,6-二磷酸,它便“翻脸”,传递给也正是林圣彩教授课题组先前发现的溶酶体途径进而激活AMPK。该过程完全不涉及AMP水平,即能量水平的变化,是一条全新的、完全建立在实际的生理情况上的通路。林圣彩教授进一步地把葡萄糖水平总结为一种“状态信号”,以区别于传统的“能量信号”。据悉,该葡萄糖感知通路的发现对开发用于治疗肥胖症,乃至延长寿命的药物具有深远的意义。【Abstract】The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)1, but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK2, 3, 4, 5. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation6, 7. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.D.G.H. was supported by an Investigator Award from the Wellcome Trust (097726) and a Programme Grant from Cancer Research UK (C37030/A15101). S.-C.L. was supported by grants from the National Key Research and Development Project of China (2016YFA0502001) and the National Natural Science Foundation of China (#31430094, #31690101, #31571214, #31601152 and #J1310027)

    Optogenetic acidification of synaptic vesicles and lysosomes

    Get PDF
    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes
    corecore