674 research outputs found

    Dynamic Matter-Wave Pulse Shaping

    Full text link
    In this paper we discuss possibilities to manipulate a matter-wave with time-dependent potentials. Assuming a specific setup on an atom chip, we explore how one can focus, accelerate, reflect, and stop an atomic wave packet, with, for example, electric fields from an array of electrodes. We also utilize this method to initiate coherent splitting. Special emphasis is put on the robustness of the control schemes. We begin with the wave packet of a single atom, and extend this to a BEC, in the Gross-Pitaevskii picture. In analogy to laser pulse shaping with its wide variety of applications, we expect this work to form the base for additional time-dependent potentials eventually leading to matter-wave pulse shaping with numerous application

    Programmable trap geometries with superconducting atom chips

    Full text link
    We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultra-cold atoms. The trap geometry can be programmed by externally applied fields. This new approach for atom-optics is demonstrated by three different trap types realized on a single micro-structure: a Z-type trap, a double trap and a bias field free trap. Our studies show that superconductors in the remanent state provide a new versatile platform for atom-optics and applications in ultra-cold quantum gases

    Organized Current Patterns in Disordered Conductors

    Full text link
    We present a general theory of current deviations in straight current carrying wires with random imperfections, which quantitatively explains the recent observations of organized patterns of magnetic field corrugations above micron-scale evaporated wires. These patterns originate from the most efficient electron scattering by Fourier components of the wire imperfections with wavefronts along the ±45\pm 45^{\circ} direction. We show that long range effects of surface or bulk corrugations are suppressed for narrow wires or wires having an electrically anisotropic resistivity

    Majorana spin-flip transitions in a magnetic trap

    Get PDF
    Atoms confined in a magnetic trap can escape by making spin-flip Majorana transitions due to a breakdown of the adiabatic approximation. Several papers have studied this process for atoms with spin F=1/2F = 1/2 or F=1F= 1. The present paper calculates the escape rate for atoms with spin F>1F > 1. This problem has new features because the perturbation ΔT\Delta T which allows atoms to escape satisfies a selection rule ΔFz=0,±1,±2\Delta F_z = 0, \pm 1, \pm 2 and multi-step processes contribute in leading order. When the adiabatic approximation is satisfied the leading order terms can be summed to yield a simple expression for the escape rate.Comment: 16page

    Optimal quantum control of Bose Einstein condensates in magnetic microtraps

    Get PDF
    Transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as wire currents or radio-frequency fields, is studied within the framework of optimal control theory (OCT). We derive from the Gross-Pitaevskii equation the optimality system for the OCT fields that allow to efficiently channel the condensate between given initial and desired states. For a variety of magnetic confinement potentials we study transport and wavefunction splitting of the condensate, and demonstrate that OCT allows to drastically outperfrom more simple schemes for the time variation of the microtrap control parameters.Comment: 11 pages, 7 figure

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200μ\mum) at various atom--surface distances (35-450μ\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    Atom chips with two-dimensional electron gases: theory of near surface trapping and ultracold-atom microscopy of quantum electronic systems

    Full text link
    We show that current in a two-dimensional electron gas (2DEG) can trap ultracold atoms <1μ<1 \mum away with orders of magnitude less spatial noise than a metal trapping wire. This enables the creation of hybrid systems, which integrate ultracold atoms with quantum electronic devices to give extreme sensitivity and control: for example, activating a single quantized conductance channel in the 2DEG can split a Bose-Einstein condensate (BEC) for atom interferometry. In turn, the BEC offers unique structural and functional imaging of quantum devices and transport in heterostructures and graphene.Comment: 5 pages, 4 figures, minor change

    Quantum glass phases in the disordered Bose-Hubbard model

    Full text link
    The phase diagram of the Bose-Hubbard model in the presence of off-diagonal disorder is determined using Quantum Monte Carlo simulations. A sequence of quantum glass phases intervene at the interface between the Mott insulating and the Superfluid phases of the clean system. In addition to the standard Bose glass phase, the coexistence of gapless and gapped regions close to the Mott insulating phase leads to a novel Mott glass regime which is incompressible yet gapless. Numerical evidence for the properties of these phases is given in terms of global (compressibility, superfluid stiffness) and local (compressibility, momentum distribution) observables

    Optical discrimination between spatial decoherence and thermalization of a massive object

    Full text link
    We propose an optical ring interferometer to observe environment-induced spatial decoherence of massive objects. The object is held in a harmonic trap and scatters light between degenerate modes of a ring cavity. The output signal of the interferometer permits to monitor the spatial width of the object's wave function. It shows oscillations that arise from coherences between energy eigenstates and that reveal the difference between pure spatial decoherence and that coinciding with energy transfer and heating. Our method is designed to work with a wide variety of masses, ranging from the atomic scale to nano-fabricated structures. We give a thorough discussion of its experimental feasibility.Comment: 2 figure

    Roughness with a finite correlation length in the Microtrap

    Full text link
    We analyze the effects of roughness in the magnitude of the magnetic field produced by a current carrying microwire, which is caused by geometric fluctuation of the edge of wire. The relation between the fluctuation of the trapping potential and the height that atom trap lies above the wire is consistent with the experimental data very well, when the colored noise with a finite correlation length is considered. On this basis, we generate the random potential and get the density distribution of the BEC atoms by solving the Gross-Pitaevskii equation, which coincides well with the experimental image, especially in the number of fragmentations. The results help us further understand the nature of the fluctuation and predict the possible application in the precise measurement.Comment: 6 pages, 7 figure
    corecore