129 research outputs found

    Effect of Surface Treatments on the Nanomechanical Properties of Human Hair.

    Get PDF
    The structural properties of hair are largely determined by the state of the surface. Advanced imaging modes of atomic force microscopy, where the surface mechanics can be correlated with surface topography, have been used to spatially map variations in hair surfaces following chemical and mechanical treatments. Through analysis of multilayered data obtained in this way, we show that the processes of bleaching and combing of hair not only alter the surface roughness, but also alter the mechanical stiffness, adhesion properties, and surface potential of hair, in terms of the mean values and their distributions. These treatments are shown to have a significant effect on the nanoscale surface properties, consistent with what has previously been observed at the macroscopic fiber-level scale.Unileve

    Polydispersity and ordered phases in solutions of rodlike macromolecules

    Full text link
    We apply density functional theory to study the influence of polydispersity on the stability of columnar, smectic and solid ordering in the solutions of rodlike macromolecules. For sufficiently large length polydispersity (standard deviation σ>0.25\sigma>0.25) a direct first-order nematic-columnar transition is found, while for smaller σ\sigma there is a continuous nematic-smectic and first-order smectic-columnar transition. For increasing polydispersity the columnar structure is stabilized with respect to solid perturbations. The length distribution of macromolecules changes neither at the nematic-smectic nor at the nematic-columnar transition, but it does change at the smectic-columnar phase transition. We also study the phase behaviour of binary mixtures, in which the nematic-smectic transition is again found to be continuous. Demixing according to rod length in the smectic phase is always preempted by transitions to solid or columnar ordering.Comment: 13 pages (TeX), 2 Postscript figures uuencode

    The combined tensile and torsional behavior of irregular fibers

    Full text link
    Most fibers are irregular, and they are often subjected to combined loading conditions during processing and end-use. In this paper, polyester and wool fibers under the combined tensile and torsional loads have been studied for the first time, using the finite element method (FEM). The dimensional irregularities of these fibers are simulated with sine waves of different magnitude and frequency. The breaking load and breaking extension of the fibers at different twist or torsion levels are then calculated from the finite element model. The results indicate that twist and level of fiber irregularity have a major impact on the mechanical properties of the fiber and the effect of the frequency of irregularity is relatively small.<br /

    Defects in Chiral Columnar Phases: Tilt Grain Boundaries and Iterated Moire Maps

    Full text link
    Biomolecules are often very long with a definite chirality. DNA, xanthan and poly-gamma-benzyl-glutamate (PBLG) can all form columnar crystalline phases. The chirality, however, competes with the tendency for crystalline order. For chiral polymers, there are two sorts of chirality: the first describes the usual cholesteric-like twist of the local director around a pitch axis, while the second favors the rotation of the local bond-orientational order and leads to a braiding of the polymers along an average direction. In the former case chirality can be manifested in a tilt grain boundary phase (TGB) analogous to the Renn-Lubensky phase of smectic-A liquid crystals. In the latter case we are led to a new "moire" state with twisted bond order. In the moire state polymers are simultaneously entangled, crystalline, and aligned, on average, in a common direction. In the moire state polymers are simultaneously entangled, crystalline, and aligned, on average, in a common direction. In this case the polymer trajectories in the plane perpendicular to their average direction are described by iterated moire maps of remarkable complexity, reminiscent of dynamical systems.Comment: plain TeX, (33 pages), 17 figures, some uufiled and included, the remaining available at ftp://ftp.sns.ias.edu/pub/kamien/ or by request to [email protected]

    Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair

    Get PDF
    The ability of Protein disulphide isomerase (PDI) to promote the grafting of two cysteine-containing peptides onto hair was investigated in order to develop an alternative treatment for over-bleached hair. The studied peptides were designed based on human keratin and human lung surfactant proteins and were linked to a fluorescent dye to facilitate visualisation of the grafting process and to assess hair penetration. The ability of the peptides to restore mechanical and thermal properties lost by repeated bleaching treatments was also studied. After eight bleaching treatments, hair samples displayed 42% less mechanical resistance, coupled with a decrease in α-helix denaturation enthalpies and temperatures. Hair surface damage following bleaching was visualized by scanning electron microscopy. Addition of PDI to the treatment formulations promoted peptide attachment to the hair via disulphide bonds, facilitating their penetration into the hair cortex, as observed by fluorescence microscopy. The proposed peptide treatment resulted in an increase in α-helix denaturation enthalpy in over-bleached hair, as well as an increase in both Young's modulus and tensile strength. Thus, mechanical and thermal properties were improved after the peptide treatment in the presence of PDI; suggesting that the formulations presented in this work are promising candidates for hair-care applications

    Human Nail Plate Modifications Induced by Onychomycosis : Implications for Topical Therapy

    Get PDF
    Open Access - This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedConclusions: Onchomycotic nails presented a thicker but more porous barrier, and its eroded intracellular matrix rendered the tissue more permeable to topically applied chemicals when an aqueous vehicle was used.Purpose: Through the characterisation of the human onchomycotic nail plate this study aimed to inform the design of new topical ungual formulations.Methods: The mechanical properties of the human nail were characterised using a Lloyd tensile strength tester. The nail’s density was determined via pycnometry and the nail’s ultrastructure by electron microscopy. Raman spectroscopy analysed the keratin disulphide bonds within the nail and its permeability properties were assessed by quantifying water and rhodamine uptake.Results: Chronic in vivo nail plate infection increased human nailplate thickness (healthy 0.49 ± 0.15 mm; diseased 1.20 ± 0.67 mm), but reduced its tensile strength (healthy 63.7 ± 13.4 MPa; diseased 41.7 ± 5.0 MPa) and density (healthy 1.34 ± 0.01 g/cm3; diseased 1.29 ± 0.00 g/cm3). Onchomycosis caused cell-cell separation, without disrupting the nail disulfide bonds or desmosomes. The diseased and healthy nails showed equivalent water uptake profiles, but the rhodamine penetration was 4-fold higher in the diseased nails using a PBS vehicle and 3 -fold higher in an ethanol/PBS vehicle.Peer reviewe

    Mechanical analysis of infant carrying in hominoids

    Get PDF
    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair–hair friction coefficient, and body angle exists. The hair–hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here

    Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    Get PDF
    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
    • …
    corecore