123 research outputs found

    A Simple Model for Magnetization Ratios in Doped Nanocrystals

    Full text link
    Recent experiments on Mn-doped ZnS nanocrystals have shown unusual magnetization properties. We describe a nearest-neighbor Heisenberg exchange model for calculating the magnetization ratios of these antiferromagnetically doped crystals, in which the dopant atoms are distributed inhomogeneously within the nanocrystal. This simple inhomogeneous doping model is capable of reproducing the experimental results, and suggests that interior dopant atoms are localized within the crystal.Comment: 8 pages, 1 figure, 2 tables. Submitted to J. Appl. Phy

    Large K-exciton dynamics in GaN epilayers: the non-thermal and thermal regime

    Full text link
    We present a detailed investigation concerning the exciton dynamics in GaN epilayers grown on c-plane sapphire substrates, focussing on the exciton formation and the transition from the nonthermal to the thermal regime. The time-resolved kinetics of LO-phonon replicas is used to address the energy relaxation in the excitonic band. From ps time-resolved spectra we bring evidence for a long lasting non-thermal excitonic distribution which accounts for the rst 50 ps. Such a behavior is con rmed in di erent experimental conditions, both when non-resonant and resonant excitation are used. At low excitation power density the exciton formation and their subsequent thermalization is dominated by impurity scattering rather than by acoustic phonon scattering. The estimate of the average energy of the excitons as a function of delay after the excitation pulse provides information on the relaxation time, which describes the evolution of the exciton population to the thermal regime.Comment: 9 pages,8 figure

    Mapping Polarization Fields in Al0.85In0.15N/AlN/GaN Heterostructures

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 - July 30, 200

    Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells

    Get PDF
    The authors report on the achievement of optically pumped III-V nitride blue microdisk lasers operating at room temperature. Controlled wet chemical etching of an AlInN interlayer lattice matched to GaN allows forming inverted cone pedestals. Whispering gallery modes are observed in the photoluminescence spectra of InGaN∕GaN quantum wells embedded in the GaN microdisks. Typical quality factors of several thousands are found (Q>4000). Laser action at ∼420nm is achieved under pulsed excitation at room temperature for a peak power density of 400kW/cm2. The lasing emission linewidth is down to 0.033nm

    High spatial resolution picosecond cathodoluminescence of InGaN quantum wells

    Get PDF
    The authors have studied InxGa1-xN/GaN (x approximate to 15%) quantum wells (QWs) using atomic force microscopy (AFM) and picosecond time resolved cathodoluminescence (pTRCL) measurements. They observed a contrast inversion between monochromatic CL maps corresponding to the high energy side (3.13 eV) and the low energy side (3.07 eV) of the QW luminescence peak. In perfect correlation with CL images, AFM images clearly show regions where the QW thickness almost decreases to zero. Pronounced spectral diffusion from high energy thinner regions to low energy thicker regions is observed in pTRCL, providing a possible explanation for the hindering of nonradiative recombination at dislocations. (c) 2006 American Institute of Physics

    A microLed imager for AR headset for use in high luminance environment

    Get PDF
    Today, popular Augmented Reality headsets suffer from a lack of brightness to allow the diffusion of readable information against a very bright landscape, in particular for avionics use, and more generally, outdoor applications.We present in this paper, the project “HiLICo”, aiming to develop an emissive GaN micro-displays with 1640 x 1032 pixel resolution (WUXGA), 9.5-|jm pixel pitch, very high brightness (over 1Mcd/ cm2) and good form factor capabilities that will enable the design of ground breaking compact see-through system for next generation Avionics applications

    Towards a quantum representation of the ampere using single electron pumps

    Full text link
    Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantised electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (ppm) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 ppm. This type of pump is a promising candidate for further development as a realisation of the SI base unit ampere, following a re-definition of the ampere in terms of a fixed value of the elementary charge.Comment: 8 pages, 7 figure

    Three Dimensionally Diluted Magnetic Semiconductor Clusters Cd 1

    No full text
    corecore