2,940 research outputs found

    Tensile properties of demineralized dentin matrix after 48 months

    Get PDF
    Abstract no. 844published_or_final_versio

    Self-organization with equilibration: a model for the intermediate phase in rigidity percolation

    Full text link
    Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modify a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold.Comment: 9 pages, 6 figure

    Algorithms for 3D rigidity analysis and a first order percolation transition

    Full text link
    A fast computer algorithm, the pebble game, has been used successfully to study rigidity percolation on 2D elastic networks, as well as on a special class of 3D networks, the bond-bending networks. Application of the pebble game approach to general 3D networks has been hindered by the fact that the underlying mathematical theory is, strictly speaking, invalid in this case. We construct an approximate pebble game algorithm for general 3D networks, as well as a slower but exact algorithm, the relaxation algorithm, that we use for testing the new pebble game. Based on the results of these tests and additional considerations, we argue that in the particular case of randomly diluted central-force networks on BCC and FCC lattices, the pebble game is essentially exact. Using the pebble game, we observe an extremely sharp jump in the largest rigid cluster size in bond-diluted central-force networks in 3D, with the percolating cluster appearing and taking up most of the network after a single bond addition. This strongly suggests a first order rigidity percolation transition, which is in contrast to the second order transitions found previously for the 2D central-force and 3D bond-bending networks. While a first order rigidity transition has been observed for Bethe lattices and networks with ``chemical order'', this is the first time it has been seen for a regular randomly diluted network. In the case of site dilution, the transition is also first order for BCC, but results for FCC suggest a second order transition. Even in bond-diluted lattices, while the transition appears massively first order in the order parameter (the percolating cluster size), it is continuous in the elastic moduli. This, and the apparent non-universality, make this phase transition highly unusual.Comment: 28 pages, 19 figure

    Comparative Genomics of Leuconostoc carnosum

    Get PDF
    Leuconostoc carnosum is a known colonizer of meat-related food matrices. It reaches remarkably high loads during the shelf life in packaged meat products and plays a role in spoilage, although preservative effects have been proposed for some strains. In this study, the draft genomes of 17 strains of L. carnosum (i.e., all the strains that have been sequenced so far) were compared to decipher their metabolic and functional potential and to determine their role in food transformations. Genome comparison and pathway reconstruction indicated that L. carnosum is a compact group of closely related heterofermentative bacteria sharing most of the metabolic features. Adaptation to a nitrogen-rich environment, such as meat, is evidenced by 23 peptidase genes identified in the core genome and by the autotrophy for nitrogen compounds including several amino acids, vitamins, and cofactors. Genes encoding the decarboxylases yielding biogenic amines were not present. All the strains harbored 1–4 of 32 different plasmids, bearing functions associated to proteins hydrolysis, transport of amino acids and oligopeptides, exopolysaccharides, and various resistances (e.g., to environmental stresses, bacteriophages, and heavy metals). Functions associated to bacteriocin synthesis, secretion, and immunity were also found in plasmids. While genes for lactococcin were found in most plasmids, only three harbored the genes for leucocin B, a class IIa antilisterial bacteriocin. Determinants of antibiotic resistances were absent in both plasmids and chromosomes

    Opinion diversity and community formation in adaptive networks

    Full text link
    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. The existing models of such co-evolution typically lead to the final states where network nodes either reach a global consensus or break into separated communities, each of which holding its own community consensus. Such results, however, can hardly explain the richness of real-life observations that opinions are always diversified with no global or even community consensus, and people seldom, if not never, totally cut off themselves from dissenters. In this article, we show that, a simple model integrating consensus formation, link rewiring and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities remain to be interconnected by non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the phase transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity, etc.Comment: 12 pages, 8 figures, Journa

    Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance

    Full text link
    In order to elucidate the nature of ferromagnetic signatures observed in (Zn,Co)O we have examined experimentally and theoretically magnetic properties and spin-dependent quantum localization effects that control low-temperature magnetoresistance. Our findings, together with a through structural characterization, substantiate the model assigning spontaneous magnetization of (Zn,Co)O to uncompensated spins at the surface of antiferromagnetic nanocrystal of Co-rich wurtzite (Zn,Co)O. The model explains a large anisotropy observed in both magnetization and magnetoresistance in terms of spin hamiltonian of Co ions in the crystal field of the wurtzite lattice.Comment: 6 pages, 6 figure

    Microtensile bond strength of several adhesive systems to different dentin depths

    Get PDF
    Abstract no. 15published_or_final_versio

    Predictability of large future changes in a competitive evolving population

    Full text link
    The dynamical evolution of many economic, sociological, biological and physical systems tends to be dominated by a relatively small number of unexpected, large changes (`extreme events'). We study the large, internal changes produced in a generic multi-agent population competing for a limited resource, and find that the level of predictability actually increases prior to a large change. These large changes hence arise as a predictable consequence of information encoded in the system's global state.Comment: 10 pages, 3 figure

    Thermodynamics of AdS/QCD

    Get PDF
    We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for TcT_c and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.Comment: 1+19 pages, 6 figures, references added, section 3 improve

    Isostatic phase transition and instability in stiff granular materials

    Full text link
    In this letter, structural rigidity concepts are used to understand the origin of instabilities in granular aggregates. It is shown that: a) The contact network of a noncohesive granular aggregate becomes exactly isostatic in the limit of large stiffness-to-load ratio. b) Isostaticity is responsible for the anomalously large susceptibility to perturbation of these systems, and c) The load-stress response function of granular materials is critical (power-law distributed) in the isostatic limit. Thus there is a phase transition in the limit of intinitely large stiffness, and the resulting isostatic phase is characterized by huge instability to perturbation.Comment: RevTeX, 4 pages w/eps figures [psfig]. To appear in Phys. Rev. Let
    corecore