3,425 research outputs found

    Convex Rank Tests and Semigraphoids

    Get PDF
    Convex rank tests are partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. Each class consists of the linear extensions of a partially ordered set specified by data. Our methods refine existing rank tests of non-parametric statistics, such as the sign test and the runs test, and are useful for exploratory analysis of ordinal data. We establish a bijection between convex rank tests and probabilistic conditional independence structures known as semigraphoids. The subclass of submodular rank tests is derived from faces of the cone of submodular functions, or from Minkowski summands of the permutohedron. We enumerate all small instances of such rank tests. Of particular interest are graphical tests, which correspond to both graphical models and to graph associahedra

    Toward Realistic Intersecting D-Brane Models

    Full text link
    We provide a pedagogical introduction to a recently studied class of phenomenologically interesting string models, known as Intersecting D-Brane Models. The gauge fields of the Standard-Model are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersections can give rise to chiral fermions. We address the basic issues and also provide an overview of the recent activity in this field. This article is intended to serve non-experts with explanations of the fundamental aspects, and also to provide some orientation for both experts and non-experts in this active field of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte

    Non-Minimal and Non-Universal Supersymmetry

    Get PDF
    I motivate and discuss non-minimal and non-universal models of supersymmetry and supergravity consistent with string unification at 101610^{16} GeV.Comment: 10 pages, Latex. Plenary talk given at 6th Workshop in High Energy Physics Phenomenology (WHEPP 6), Chennai (Madras), India, 3-15 Jan 200

    3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Get PDF
    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or neutral pions from protons.Comment: 12 pages, 9 figures, accepted by Apj, 24 June 200

    Top Quarks as a Window to String Resonances

    Full text link
    We study the discovery potential of string resonances decaying to ttˉt\bar{t} final state at the LHC. We point out that top quark pair production is a promising and an advantageous channel for studying such resonances, due to their low Standard Model background and unique kinematics. We study the invariant mass distribution and angular dependence of the top pair production cross section via exchanges of string resonances. The mass ratios of these resonances and the unusual angular distribution may help identify their fundamental properties and distinguish them from other new physics. We find that string resonances for a string scale below 4 TeV can be detected via the ttˉt\bar{t} channel, either from reconstructing the ttˉt\bar{t} semi-leptonic decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure

    Oblique Parameter Constraints on Large Extra Dimensions

    Get PDF
    We consider the Kaluza-Klein scenario in which gravity propagates in the 4+n4+n dimensional bulk of spacetime and the Standard Model particles are confined to a 3-brane. We calculate the gauge boson self-energy corrections arising from the exchange of virtual gravitons and present our results in the STUSTU-formalism. We find that the new physics contributions to SS, TT and UU decouple in the limit that the string scale MSM_S goes to infinity. The oblique parameters constrain the lower limit on MSM_S. Taking the quantum gravity cutoff to be MSM_S, SS-parameter constraints impose MS>1.55M_S>1.55 TeV for n=2n=2 at the 1σ\sigma level. TT-parameter constraints impose MS>1.25(0.75)M_S>1.25 (0.75) TeV for n=3(6)n=3 (6).Comment: Version to appear in PR

    Possible Origin of Fermion Chirality and Gut Structure From Extra Dimensions

    Get PDF
    The fundamental chiral nature of the observed quarks and leptons and the emergence of the gauge group itself are most puzzling aspects of the standard model. Starting from general considerations of topological properties of gauge field configurations in higher space-time dimensions, it is shown that the existence of non-trivial structures in ten dimensions would determine a class of models corresponding to a grand unified GUT structure with complex fermion representations with respect to SU(3)C⊗SU(2)L⊗U(1)Y SU(3)_C \otimes SU(2)_L \otimes U(1)_Y. The discussion is carried out within the framework of string theories with characteristic energy scales below the Planck mass. Avoidance of topological obstructions upon continuous deformation of field configurations leads to global chiral symmetry breaking of the underlying fundamental theory, imposes rigorous restrictions on the structure of the vacuum and space-time itself and determines uniquely the gauge structure and matter content.Comment: final version to appear in Phys. Rev.

    Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment

    Full text link
    Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism for A STable experiment II (BEAST II) project is particularly designed to measure the beam backgrounds around the interaction point of the SuperKEKB collider for the Belle II experiment. We develop a system using bismuth germanium oxide (BGO) crystals with optical fibers connecting to a multianode photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA) embedded readout board for monitoring the real-time beam backgrounds in BEAST II. The overall radiation sensitivity of this system is estimated to be (2.20±0.26)×10−12(2.20\pm0.26)\times10^{-12} Gy/ADU (analog-to-digital unit) with the standard 10 m fibers for transmission and the MAPMT operating at 700 V. Our Îł\gamma-ray irradiation study of the BGO system shows that the exposure of BGO crystals to 60^{60}Co Îł\gamma-ray doses of 1 krad has led to immediate light output reductions of 25--40%, and the light outputs further drop by 30--45% after the crystals receive doses of 2--4 krad. Our findings agree with those of the previous studies on the radiation hard (RH) BGO crystals grown by the low thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the BGO system is also consistent with the simulation, and is estimated to be about 1.18 times the equivalent dose. These results prove that the BGO system is able to monitor the background dose rate in real time under extreme high radiation conditions. This study concludes that the BGO system is reliable for the beam background study in BEAST II

    Inhomogeneous Fragmentation of the Rolling Tachyon

    Get PDF
    Dirac-Born-Infeld type effective actions reproduce many aspects of string theory classical tachyon dynamics of unstable Dp-branes. The inhomogeneous tachyon field rolling from the top of its potential forms topological defects of lower codimensions. In between them, as we show, the tachyon energy density fragments into a p-dimensional web-like high density network evolving with time. We present an analytic asymptotic series solution of the non-linear equations for the inhomogeneous tachyon and its stress energy. The generic solution for a tachyon field with a runaway potential in arbitrary dimensions is described by the free streaming of noninteracting massive particles whose initial velocities are defined by the gradients of the initial tachyon profile. Thus, relativistic particle mechanics is a dual picture of the tachyon field effective action. Implications of this picture for inflationary models with a decaying tachyon field are discussed.Comment: 10 pages, 1 figur
    • 

    corecore