57,280 research outputs found

    Mesoscopic Noise Theory: Microscopics, or Phenomenology?

    Full text link
    We argue, physically and formally, that existing diffusive models of noise yield inaccurate microscopic descriptions of nonequilibrium current fluctuations. The theoretical shortfall becomes pronounced in quantum-confined metallic systems, such as the two-dimensional electron gas. In such systems we propose a simple experimental test of mesoscopic validity for diffusive theory's central claim: the smooth crossover between Johnson-Nyquist and shot noise.Comment: Invited paper, UPoN'99 Conference, Adelaide. 13 pp, no figs. Minor revisions to text and reference

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma

    Physics at COSY

    Get PDF
    The COSY accelerator in J\'ulich is presented together with its internal and external detectors. The physics programme performed recently is discussed with emphasis on strangeness physics.Comment: Invited talk given at the "10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU04)," IHEP, Beijing, China, 30/Aug.-4/Sept./0

    Cosmic microwave background constraints on coupled dark matter

    Get PDF
    We study CMB constraints on a model with a cosmological constant and a fraction of dark matter non-minimally coupled to a massless scalar field. In this scenario, there is an extra gravity-like fifth force which can affect the evolution of the Universe enough to have a discernible effect on measurements of cosmological parameters. Using Planck and WMAP polarisation data, we find that up to half of the dark matter can be coupled. The coupling can also be several times larger than in models with a single species of cold dark matter coupled to a quintessence scalar field, as the scalar field does not play the role of dark energy and is therefore less constrained by the data.Comment: 5 pages, 4 figure

    High-field noise in metallic diffusive conductors

    Full text link
    We analyze high-field current fluctuations in degenerate conductors by mapping the electronic Fermi-liquid correlations at equilibrium to their semiclassical non-equilibrium form. Our resulting Boltzmann description is applicable to diffusive mesoscopic wires. We derive a non-equilibrium connection between thermal fluctuations of the current and resistive dissipation. In the weak-field limit this is the canonical fluctuation- dissipation theorem. Away from equilibrium, the connection enables explicit calculation of the excess ``hot-electron'' contribution to the thermal spectrum. We show that excess thermal noise is strongly inhibited by Pauli exclusion. This behaviour is generic to the semiclassical metallic regime.Comment: 13 pp, one fig. Companion paper to cond-mat/9911251. Final version, to appear in J. Phys.: Cond. Ma
    corecore