44 research outputs found

    Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila

    Get PDF
    PIWI-interacting RNAs (piRNAs) are germline-specific small non-coding RNAs that form piRNA-induced silencing complexes (piRISCs) by associating with PIWI proteins, a subclade of the Argonaute proteins predominantly expressed in the germline. piRISCs protect the integrity of the germline genome from invasive transposable DNA elements by silencing them. Multiple piRNA biogenesis factors have been identified in Drosophila. The majority of piRNA factors are localized in the nuage, electron-dense non-membranous cytoplasmic structures located in the perinuclear regions of germ cells. Thus, piRNA biogenesis is thought to occur in the nuage in germ cells. Immunofluorescence analyses of ovaries from piRNA factor mutants have revealed a localization hierarchy of piRNA factors in female nuage. However, whether this hierarchy is female-specific or can also be applied in male gonads remains undetermined. Here, we show by immunostaining of both ovaries and testes from piRNA factor mutants that the molecular hierarchy of piRNA factors shows gender-specificity, especially for Krimper (Krimp), a Tudor-domain-containing protein of unknown function(s): Krimp is dispensable for PIWI protein Aubergine (Aub) nuage localization in ovaries but Krimp and Aub require each other for their proper nuage localization in testes. This suggests that the functional requirement of Krimp in piRNA biogenesis may be different in male and female gonads

    Diabetic Impairment of C-Kit+ Bone Marrow Stem Cells Involves the Disorders of Inflammatory Factors, Cell Adhesion and Extracellular Matrix Molecules

    Get PDF
    Bone marrow stem cells from diabetes mellitus patients exhibit functional impairment, but the relative molecular mechanisms responsible for this impairment are poorly understood. We investigated the mechanisms responsible for diabetes-related functional impairment of bone marrow stem cells by extensively screening the expression levels of inflammatory factors, cell cycle regulating molecules, extracellular matrix molecules and adhesion molecules. Bone marrow cells were collected from type 2 diabetic (db/db) and healthy control (db/m+) mice, and c-kit+ stem cells were purified (purity>85%) for experiments. Compared with the healthy control mice, diabetic mice had significantly fewer c-kit+ stem cells, and these cells had a lower potency of endothelial differentiation; however, the production of the angiogenic growth factor VEGF did not differ between groups. A pathway-focused array showed that the c-kit+ stem cells from diabetic mice had up-regulated expression levels of many inflammatory factors, including Tlr4, Cxcl9, Il9, Tgfb1, Il4, and Tnfsf5, but no obvious change in the expression levels of cell cycle molecules. Interestingly, diabetes-related alterations of the extracellular matrix and adhesion molecules were varied; Pecam, Mmp10, Lamc1, Itgb7, Mmp9, and Timp4 were up-regulated, but Col11a1, Fn1, Admts2, and Itgav were down-regulated. Some of these changes were also confirmed at the protein level by flow cytometry analysis. In conclusion, c-kit+ bone marrow stem cells from diabetic mice exhibited an extensive enhancement of inflammatory factors and disorders of the extracellular matrix and adhesion molecules. Further intervention studies are required to determine the precise role of each molecule in the diabetes-related functional impairment of c-kit+ bone marrow stem cells

    Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Get PDF
    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF), but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment

    Overexpression of heme oxygenase-1 protects allogeneic thyroid grafts from rejection in naive mice.

    No full text
    BACKGROUND: Endocrine allografts are an option for the treatment of endocrine failure. METHODS: One lobe of the thyroid was transplanted under the kidney capsule. RESULTS: C57BL/10 (H2(b)) thyroids were rejected in naive CBA (H2(k)) mice within 14 days after transplantation. When mice were treated with anti-CD4 monoclonal antibodies (mAb), all grafts survived for more than 60 days. The first grafts still survived after second C57BL/10 or Balb/c (H2(d)) thyroid grafts that were transplanted into the same recipients were rejected acutely, which suggests that the primary grafts were modified under anti-CD4 mAb treatment. To confirm this hypothesis, C57BL/10 thyroid grafts from anti-CD4 mAb-treated mice were retransplanted. All grafts survived in naive mice; this correlated with the overexpression of heme oxygenase-1 (HO-1) in the grafts. Next, an inhibitor of HO-1 (zinc protoporphyrin) or control compound (copper protoporphyrin) was injected intraperitoneally after transplantation of C57BL/10 thyroid grafts into the primary CBA recipients that had been treated with anti-CD4 mAb. The grafts in mice that had been treated with zinc protoporphyrin, but not copper protoporphyrin, were rejected when retransplanted to naive recipients. CONCLUSIONS: Overexpression of HO-1 correlated with the protection of fully allogeneic thyroid grafts from rejection when retransplanted into naive recipients
    corecore