113 research outputs found

    Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    Get PDF
    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance

    Monocular pedestrian detection: Survey and experiments

    No full text
    Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance, and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspectives. The first part of the paper consists of a survey. We cover the main components of a pedestrian detection system and the underlying models. The second (and larger) part of the paper contains a corresponding experimental study. We consider a diverse set of state-of-the-art systems: wavelet-based AdaBoost cascade, HOG/linSVM, NN/LRF, and combined shape-texture detection. Experiments are performed on an extensive data set captured onboard a vehicle driving through urban environment. The data set includes many thousands of training samples as well as a 27-minute test sequence involving more than 20,000 images with annotated pedestrian locations. We consider a generic evaluation setting and one specific to pedestrian detection onboard a vehicle. Results indicate a clear advantage of HOG/linSVM at higher image resolutions and lower processing speeds, and a superiority of the wavelet-based AdaBoost cascade approach at lower image resolutions and (near) real-time processing speeds. The data set (8.5 GB) is made public for benchmarking purposes

    Integrated pedestrian classification and orientation estimation

    No full text

    Integrated Pedestrian Classification and Orientation Estimation

    No full text
    This paper presents a novel approach to single-frame pedestrian classification and orientation estimation. Unlike previous work which addressed classification and orientation separately with different models, our method involves a probabilistic framework to approach both in a unified fashion. We address both problems in terms of a set of view-related models which couple discriminative expert classifiers with sample-dependent priors, facilitating easy integration of other cues (e.g. motion, shape) in a Bayesian fashion. This mixture-of-experts formulation approximates the probability density of pedestrian orientation and scalesup to the use of multiple cameras. Experiments on large real-world data show a significant performance improvement in both pedestrian classification and orientation estimation of up to 50%, compared to stateof-the-art, using identical data and evaluation techniques. 1

    A MULTI-LEVEL MIXTURE-OF-EXPERTS FRAMEWORK FOR PEDESTRIAN CLASSIFICATION

    No full text
    Notwithstanding many years of progress, pedestrian recognition is still a difficult but important problem. We present a novel multi-level Mixture-of-Experts approach to combine information from multiple features and cues with the objective of improved pedestrian classification. On pose-level, shape cues based on Chamfer shape matching provide sample-dependent priors for a certain pedestrian view. On modality-level, we represent each data sample in terms of image intensity, (dense) depth and (dense) flow. On feature-level, we consider histograms of oriented gradients (HOG) and local binary patterns (LBP). Multilayer perceptrons (MLP) and linear support vector machines (linSVM) are used as expert classifiers. Experiments are performed on a unique real-world multimodality dataset captured from a moving vehicle in urban traffic. This dataset has been made public for research purposes. Our results show a significant performance boost of up to a factor of 42 in reduction of false positives at constant detection rates of our approach compared to a baseline intensity-only HOG/linSVM approach

    Monocular pedestrian recognition using motion parallax

    No full text
    corecore