14,072 research outputs found
Conditional probabilities in quantum theory, and the tunneling time controversy
It is argued that there is a sensible way to define conditional probabilities
in quantum mechanics, assuming only Bayes's theorem and standard quantum
theory. These probabilities are equivalent to the ``weak measurement''
predictions due to Aharonov {\it et al.}, and hence describe the outcomes of
real measurements made on subensembles. In particular, this approach is used to
address the question of the history of a particle which has tunnelled across a
barrier. A {\it gedankenexperiment} is presented to demonstrate the physically
testable implications of the results of these calculations, along with graphs
of the time-evolution of the conditional probability distribution for a
tunneling particle and for one undergoing allowed transmission. Numerical
results are also presented for the effects of loss in a bandgap medium on
transmission and on reflection, as a function of the position of the lossy
region; such loss should provide a feasible, though indirect, test of the
present conclusions. It is argued that the effects of loss on the pulse {\it
delay time} are related to the imaginary value of the momentum of a tunneling
particle, and it is suggested that this might help explain a small discrepancy
in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
Quantum Nonlocality in Two-Photon Experiments at Berkeley
We review some of our experiments performed over the past few years on
two-photon interference. These include a test of Bell's inequalities, a study
of the complementarity principle, an application of EPR correlations for
dispersion-free time-measurements, and an experiment to demonstrate the
superluminal nature of the tunneling process. The nonlocal character of the
quantum world is brought out clearly by these experiments. As we explain,
however, quantum nonlocality is not inconsistent with Einstein causality.Comment: 16 pages including 24 figure
Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence
Using a two-photon interference technique, we measure the delay for
single-photon wavepackets to be transmitted through a multilayer dielectric
mirror, which functions as a ``photonic bandgap'' medium. By varying the angle
of incidence, we are able to confirm the behavior predicted by the group delay
(stationary phase approximation), including a variation of the delay time from
superluminal to subluminal as the band edge is tuned towards to the wavelength
of our photons. The agreement with theory is better than 0.5 femtoseconds (less
than one quarter of an optical period) except at large angles of incidence. The
source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure
Synchronizing Automata on Quasi Eulerian Digraph
In 1964 \v{C}ern\'{y} conjectured that each -state synchronizing automaton
posesses a reset word of length at most . From the other side the best
known upper bound on the reset length (minimum length of reset words) is cubic
in . Thus the main problem here is to prove quadratic (in ) upper bounds.
Since 1964, this problem has been solved for few special classes of \sa. One of
this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In
this paper we introduce a new approach to prove quadratic upper bounds and
explain it in terms of Markov chains and Perron-Frobenius theories. Using this
approach we obtain a quadratic upper bound for a generalization of Eulerian
automata.Comment: 8 pages, 1 figur
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Correlation energy of an electron gas in strong magnetic fields at high densities
The high-density electron gas in a strong magnetic field B and at zero
temperature is investigated. The quantum strong-field limit is considered in
which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to
the Gell-Mann Brueckner expression of the ground-state energy of the field-free
electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2)
(B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner
parameter r_s. The perturbation series is given exactly up to o(r_B) for the
case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
The Faraday Quantum Clock and Non-local Photon Pair Correlations
We study the use of the Faraday effect as a quantum clock for measuring
traversal times of evanescent photons through magneto-refractive structures.
The Faraday effect acts both as a phase-shifter and as a filter for circular
polarizations. Only measurements based on the Faraday phase-shift properties
are relevant to the traversal time measurements. The Faraday polarization
filtering may cause the loss of non-local (Einstein-Podolsky-Rosen) two-photon
correlations, but this loss can be avoided without sacrificing the clock
accuracy. We show that a mechanism of destructive interference between
consecutive paths is responsible for superluminal traversal times measured by
the clock.Comment: 6 figure
Quantum Noise and Superluminal Propagation
Causal "superluminal" effects have recently been observed and discussed in
various contexts. The question arises whether such effects could be observed
with extremely weak pulses, and what would prevent the observation of an
"optical tachyon." Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett., vol.
81, 2190 (1998)] have argued that quantum noise will preclude the observation
of a superluminal group velocity when the pulse consists of one or a few
photons. In this paper we reconsider this question both in a general framework
and in the specific example, suggested by Chiao, Kozhekin, and Kurizki [Phys.
Rev. Lett., vol. 77, 1254 (1996)], of off-resonant, short-pulse propagation in
an optical amplifier. We derive in the case of the amplifier a signal-to-noise
ratio that is consistent with the general ARS conclusions when we impose their
criteria for distinguishing between superluminal propagation and propagation at
the speed c. However, results consistent with the semiclassical arguments of
CKK are obtained if weaker criteria are imposed, in which case the signal can
exceed the noise without being "exponentially large." We show that the quantum
fluctuations of the field considered by ARS are closely related to
superfluorescence noise. More generally we consider the implications of
unitarity for superluminal propagation and quantum noise and study, in addition
to the complete and truncated wavepackets considered by ARS, the residual
wavepacket formed by their difference. This leads to the conclusion that the
noise is mostly luminal and delayed with respect to the superluminal signal. In
the limit of a very weak incident signal pulse, the superluminal signal will be
dominated by the noise part, and the signal-to-noise ratio will therefore be
very small.Comment: 30 pages, 1 figure, eps
- …