13,732 research outputs found

    Conditional probabilities in quantum theory, and the tunneling time controversy

    Get PDF
    It is argued that there is a sensible way to define conditional probabilities in quantum mechanics, assuming only Bayes's theorem and standard quantum theory. These probabilities are equivalent to the ``weak measurement'' predictions due to Aharonov {\it et al.}, and hence describe the outcomes of real measurements made on subensembles. In particular, this approach is used to address the question of the history of a particle which has tunnelled across a barrier. A {\it gedankenexperiment} is presented to demonstrate the physically testable implications of the results of these calculations, along with graphs of the time-evolution of the conditional probability distribution for a tunneling particle and for one undergoing allowed transmission. Numerical results are also presented for the effects of loss in a bandgap medium on transmission and on reflection, as a function of the position of the lossy region; such loss should provide a feasible, though indirect, test of the present conclusions. It is argued that the effects of loss on the pulse {\it delay time} are related to the imaginary value of the momentum of a tunneling particle, and it is suggested that this might help explain a small discrepancy in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts

    Quantum Nonlocality in Two-Photon Experiments at Berkeley

    Get PDF
    We review some of our experiments performed over the past few years on two-photon interference. These include a test of Bell's inequalities, a study of the complementarity principle, an application of EPR correlations for dispersion-free time-measurements, and an experiment to demonstrate the superluminal nature of the tunneling process. The nonlocal character of the quantum world is brought out clearly by these experiments. As we explain, however, quantum nonlocality is not inconsistent with Einstein causality.Comment: 16 pages including 24 figure

    Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence

    Get PDF
    Using a two-photon interference technique, we measure the delay for single-photon wavepackets to be transmitted through a multilayer dielectric mirror, which functions as a ``photonic bandgap'' medium. By varying the angle of incidence, we are able to confirm the behavior predicted by the group delay (stationary phase approximation), including a variation of the delay time from superluminal to subluminal as the band edge is tuned towards to the wavelength of our photons. The agreement with theory is better than 0.5 femtoseconds (less than one quarter of an optical period) except at large angles of incidence. The source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.

    The Faraday Quantum Clock and Non-local Photon Pair Correlations

    Get PDF
    We study the use of the Faraday effect as a quantum clock for measuring traversal times of evanescent photons through magneto-refractive structures. The Faraday effect acts both as a phase-shifter and as a filter for circular polarizations. Only measurements based on the Faraday phase-shift properties are relevant to the traversal time measurements. The Faraday polarization filtering may cause the loss of non-local (Einstein-Podolsky-Rosen) two-photon correlations, but this loss can be avoided without sacrificing the clock accuracy. We show that a mechanism of destructive interference between consecutive paths is responsible for superluminal traversal times measured by the clock.Comment: 6 figure

    Quantum Noise and Superluminal Propagation

    Get PDF
    Causal "superluminal" effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an "optical tachyon." Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett., vol. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki [Phys. Rev. Lett., vol. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being "exponentially large." We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wavepackets considered by ARS, the residual wavepacket formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small.Comment: 30 pages, 1 figure, eps
    corecore