1,939 research outputs found

    Treatment of multidrug-resistant tuberculosis in a remote, conflict-affected area of the Democratic Republic of Congo.

    Get PDF
    The Democratic Republic of Congo is a high-burden country for multidrug-resistant tuberculosis. Médecins Sans Frontières has supported the Ministry of Health in the conflict-affected region of Shabunda since 1997. In 2006, three patients were diagnosed with drug-resistant TB (DR-TB) and had no options for further treatment. An innovative model was developed to treat these patients despite the remote setting. Key innovations were the devolving of responsibility for treatment to non-TB clinicians remotely supported by a TB specialist, use of simplified monitoring protocols, and a strong focus on addressing stigma to support adherence. Treatment was successfully completed after a median of 24 months. This pilot programme demonstrates that successful treatment for DR-TB is possible on a small scale in remote settings

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,sSr,s \in S, a solution gGg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,BSnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements aAa \in A and bBb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and A|A| and B|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bdellovibrio bacteriovorus </it>is a gram-negative bacterium that preys upon other gram-negative bacteria. Although the life cycle of <it>Bdellovibrio </it>has been extensively investigated, very little is known about the mechanisms involved in predation.</p> <p>Results</p> <p>Host-Independent (HI) mutants of <it>B. bacteriovorus </it>were isolated from wild-type strain 109J. Predation assays confirmed that the selected HI mutants retained their ability to prey on host cells grown planktonically and in a biofilm. A mariner transposon library of <it>B. bacteriovorus </it>HI was constructed and HI mutants that were impaired in their ability to attack biofilms were isolated. Transposon insertion sites were determined using arbitrary polymerase chain reaction. Ten HI transposon mutants mapped to genes predicted to be involved in mechanisms previously implicated in predation (flagella, pili and chemotaxis) were further examined for their ability to reduce biofilms.</p> <p>Conclusion</p> <p>In this study we describe a new method for isolating genes that are required for <it>Bdellovibrio </it>biofilm predation. Focusing on mechanisms that were previously attributed to be involved in predation, we demonstrate that motility systems are required for predation of bacterial biofilms. Furthermore, genes identified in this study suggest that surface gliding motility may also play a role in predation of biofilms consistent with Bdellovibrios occupying a biofilm niche. We believe that the methodology presented here will open the way for future studies on the mechanisms involved in <it>Bdellovibrio </it>host-prey interaction and a greater insight of the biology of this unique organism.</p

    Multiple planar coincidences with N-fold symmetry

    Get PDF
    Planar coincidence site lattices and modules with N-fold symmetry are well understood in a formulation based on cyclotomic fields, in particular for the class number one case, where they appear as certain principal ideals in the corresponding ring of integers. We extend this approach to multiple coincidences, which apply to triple or multiple junctions. In particular, we give explicit results for spectral, combinatorial and asymptotic properties in terms of Dirichlet series generating functions.Comment: 13 pages, two figures. For previous related work see math.MG/0511147 and math.CO/0301021. Minor changes and references update

    Modified Spin Wave Analysis of Low Temperature Properties of Spin-1/2 Frustrated Ferromagnetic Ladder

    Full text link
    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interaction are investigated using the modified spin wave approximation in the region with ferromagnetic ground state. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.Comment: 9 pages, 8 figure

    Interacting Boson Theory of the Magnetization Process of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain

    Get PDF
    The low temperature magnetization process of the ferromagnetic-antiferromagnetic Heisenberg chain is studied using the interacting boson approximation. In the low field regime and near the saturation field, the spin wave excitations are approximated by the δ\delta function boson gas for which the Bethe ansatz solution is available. The finite temperature properties are calculated by solving the integral equation numerically. The comparison is made with Monte Carlo calculation and the limit of the applicability of the present approximation is discussed.Comment: 4 pages, 7 figure

    Pepper-pot emittance measurement of laser-plasma wakefield accelerated electrons

    Get PDF
    The transverse emittance is an important parameter governing the brightness of an electron beam. Here we present the first pepper-pot measurement of the transverse emittance for a mono-energetic electron beam from a laser-plasma wakefield accelerator, carried out on the Advanced Laser-Plasma High Energy Accelerators towards X-Rays (ALPHA-X) beam line. Mono-energetic electrons are passed through an array of 52 mu m diameter holes in a tungsten mask. The pepper-pot results set an upper limit for the normalised emittance at 5.5 +/- 1 pi mm mrad for an 82 MeV beam
    corecore