23,511 research outputs found

    An unified cosmological evolution driven by a mass dimension one fermionic field

    Full text link
    An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.Comment: 22 pages, 5 figure

    Dynamics and Constraints of the Massive Gravitons Dark Matter Flat Cosmologies

    Full text link
    We discuss the dynamics of the universe within the framework of Massive Graviton Dark Matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the Cosmic Microwave Background (CMB) shift parameter and the Baryonic Acoustic Oscillations (BAOs) as traced by the Sloan Digital Sky Survey (SDSS) red luminous galaxies. The linear evolution of small density fluctuations is also analysed in detail. It is found that the growth factor of the MGCDM model is slightly different (14\sim1-4%) from the one provided by the conventional flat Λ\LambdaCDM cosmology. The growth rate of clustering predicted by MGCDM and Λ\LambdaCDM models are confronted to the observations and the corresponding best fit values of the growth index (γ\gamma) are also determined. By using the expectations of realistic future X-ray and Sunyaev-Zeldovich cluster surveys we derive the dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Λ\LambdaCDM models provide a halo redshift distribution departing significantly from the ones predicted by other DE models. These results suggest that the MGCDM model can observationally be distinguished from Λ\LambdaCDM and also from a large number of dark energy models recently proposed in the literature.Comment: Accepted for publication in Physical Review D (12 pages, 4 figures

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    Full text link
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ωeff0\Omega^0_{\rm eff}. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ωeff0<0.910.59 < \Omega^0_{\rm eff} < 0.91 and 0.40<Ωeff0<0.930.40 < \Omega^0_{\rm eff} < 0.93 within, respectively, 1σ1\sigma and 3σ3\sigma confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ωeff0\Omega^0_{\rm eff} observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl

    Group selection models in prebiotic evolution

    Full text link
    The evolution of enzyme production is studied analytically using ideas of the group selection theory for the evolution of altruistic behavior. In particular, we argue that the mathematical formulation of Wilson's structured deme model ({\it The Evolution of Populations and Communities}, Benjamin/Cumings, Menlo Park, 1980) is a mean-field approach in which the actual environment that a particular individual experiences is replaced by an {\it average} environment. That formalism is further developed so as to avoid the mean-field approximation and then applied to the problem of enzyme production in the prebiotic context, where the enzyme producer molecules play the altruists role while the molecules that benefit from the catalyst without paying its production cost play the non-altruists role. The effects of synergism (i.e., division of labor) as well as of mutations are also considered and the results of the equilibrium analysis are summarized in phase diagrams showing the regions of the space of parameters where the altruistic, non-altruistic and the coexistence regimes are stable. In general, those regions are delimitated by discontinuous transition lines which end at critical points.Comment: 22 pages, 10 figure

    Twisted partial actions of Hopf algebras

    Full text link
    In this work, the notion of a twisted partial Hopf action is introduced as a unified approach for twisted partial group actions, partial Hopf actions and twisted actions of Hopf algebras. The conditions on partial cocycles are established in order to construct partial crossed products, which are also related to partially cleft extensions of algebras. Examples are elaborated using algebraic groups

    Stripe-tetragonal phase transition in the 2D Ising model with dipole interactions: Partition-function zeros approach

    Get PDF
    We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction \delta where the phase characterized by striped configurations of width h=1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between \delta=0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents \nu that are clearly consistent with a single second-order phase transition line, thus excluding such tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.Comment: to appear in Phys. Rev.
    corecore