38 research outputs found

    The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology

    Get PDF
    The last decade has witnessed tremendous progress in the understanding of the mineralocorticoid receptor (MR), its molecular mechanism of action, and its implications for physiology and pathophysiology. After the initial cloning of MR, and identification of its gene structure and promoters, it now appears as a major actor in protein-protein interaction networks. The role of transcriptional coregulators and the determinants of mineralocorticoid selectivity have been elucidated. Targeted oncogenesis and transgenic mouse models have identified unexpected sites of MR expression and novel roles for MR in non-epithelial tissues. These experimental approaches have contributed to the generation of new cell lines for the characterization of aldosterone signaling pathways, and have also facilitated a better understanding of MR physiology in the heart, vasculature, brain and adipose tissues. This review describes the structure, molecular mechanism of action and transcriptional regulation mediated by MR, emphasizing the most recent developments at the cellular and molecular level. Finally, through insights obtained from mouse models and human disease, its role in physiology and pathophysiology will be reviewed. Future investigations of MR biology should lead to new therapeutic strategies, modulating cell-specific actions in the management of cardiovascular disease, neuroprotection, mineralocorticoid resistance, and metabolic disorders

    Mechanism of the antimineralocorticoid effects of spirolactones

    Get PDF
    Spirolactones are antimineralocorticoid compounds, which were introduced into therapeutics in 1960. They are useful in the treatment of hyperaldosteronism and essential hypertension, although their side effects (gynecomastia, impotence, menstrual cycle abnormalities) limit their use. They are known to antagonize the effect of aldosterone at the level of the target cells, and until recently this mechanism was the only one generally implicated. In 1972, Erbler showed that spironolactone inhibits aldosterone biosynthesis in vitro [1]. Since then, several authors have confirmed this effect, both in animals and man, and have therefore challenged the relative importance of peripheral aldosterone antagonism in favor of an inhibitory effect of these drugs on aldosterone biosynthesis.This editorial review attempts to clarify the findings and to determine whether antialdosterones act mainly at the target cell, or through inhibition of aldosterone production, or alternatively by a combination of each effect

    Affinity of corticosteroids for mineralocorticoid and glucocorticoid receptors of the rabbit kidney: effect of steroid substitution.

    No full text
    Corticosteroid derivatives coupled in the C3, C7 or C17 position with a long aliphatic chain were synthesized in order to select a suitable ligand for the preparation of a biospecific affinity adsorbent for mineralocorticoid receptor purification. The affinity of these derivatives for mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) was explored in rabbit kidney cytosol. In this model, aldosterone bound to a single class of receptors with high affinity (Kd 1 nM) and mineralocorticoid specificity. RU26988, a highly specific ligand for GR, did not compete for these sites. The C7 and C17 positions were found to be of crucial importance in the steroid's interaction with the mineralocorticoid receptors, since the linkage of a long side chain in these positions induced complete loss of affinity. Hence, deoxycorticosterone no longer bound to MR after 17 beta substitution with a 9-carbon aliphatic chain. This loss of affinity was not observed for glucocorticoids. The 17 beta nonylamide derivative of dexamethasone still competed for GR. Increasing the length of the C7 side of the spirolactone SC26304 suppressed its affinity for MR. Finally, C3 was an appropriate position for steroid substitution. The 3-nonylamide of carboxymethyloxime deoxycorticosterone bound to MR but not to GR, and therefore constitutes a suitable ligand for the preparation of a mineralocorticoid adsorbent
    corecore