639 research outputs found

    Spinwave damping in the two-dimensional ferromagnetic XY model

    Get PDF
    The effect of damping of spinwaves in a two-dimensional classical ferromagnetic XY model is considered. The damping rate Γq\Gamma_{q} is calculated using the leading diagrams due to the quartic-order deviations from the harmonic spin Hamiltonian. The resulting four-dimensional integrals are evaluated by extending the techniques developed by Gilat and others for spectral density types of integrals. Γq\Gamma_{q} is included into the memory function formalism due to Reiter and Solander, and Menezes, to determine the dynamic structure function S(q,ω)S(q,\omega). For the infinite sized system, the memory function approach is found to give non-divergent spinwave peaks, and a smooth nonzero background intensity (``plateau'' or distributed intensity) for the whole range of frequencies below the spinwave peak. The background amplitude relative to the spinwave peak rises with temperature, and eventually becomes higher than the spinwave peak, where it appears as a central peak. For finite-sized systems, there are multiple sequences of weak peaks on both sides of the spinwave peaks whose number and positions depend on the system size and wavevector in integer units of 2π/L2\pi/L. These dynamical finite size effects are explained in the memory function analysis as due to either spinwave difference processes below the spinwave peak or sum processes above the spinwave peak. These features are also found in classical Monte Carlo -- Spin-Dynamics simulations.Comment: 20 two-column page

    Dynamics of chiral oscillations - A comparative analysis with spin-flipping

    Full text link
    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in appointing the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as position very rapid oscillation projections onto the longitudinal direction of momentum.Comment: 14 pages, no figure

    Dynamical solution to the μ\mu problem at TeV scale

    Get PDF
    We introduce a new confining force (\mu-color) at TeV scale to dynamically generate a supersymmetry preserving mass scale which would replace the \mu parameter in the minimal supersymmetric standard model (MSSM). We discuss the Higgs phenomenology and also the pattern of soft supersymmetry breaking parameters allowing the correct electroweak symmetry breaking within the \mu-color model, which have quite distinctive features from the MSSM and also from other generalizations of the MSSM.Comment: 12 pages, REVte

    The sign of the day-night asymmetry for solar neutrinos

    Full text link
    A qualitative understanding of the day-night asymmetry for solar neutrinos is provided. The greater night flux in nu_e is seen to be a consequence of the fact that the matter effect in the sun and that in the earth have the same sign. It is shown in the adiabatic approximation for the sun that for all values of the mixing angle theta_V between 0 and pi/2, the night flux of neutrinos is greater than the day flux. Only for small values of theta_V where the adiabatic approximation badly fails does the sign of the day-night asymmetry reverse.Comment: 3 pages, 3 figures, typos corrected and references adde

    QED Corrections to the Scattering of Solar Neutrinos and Electrons

    Full text link
    We discuss recent calculations of the O(alpha) QED corrections to the recoil electron energy spectrum in neutrino electron scattering, and to the spectrum of the combined energy of the recoil electron and a possible accompanying photon emitted in the scattering process. We then examine the role of these corrections in the interpretation of precise measurements from solar neutrino electron scattering experiments.Comment: (16 Pages, 4 Figures) Presented at the Symposium in Honor of Professor Alberto Sirlin's 70th Birthday: ``50 Years of Precision Electroweak Physics'', New York University, October 27-28, 200

    Strong CP and Mu Problems in Theories with Gauge Mediated Supersymmetry Breaking

    Full text link
    We provide a simple solution to the μ\mu and strong CP problems in the context of gauge mediated supersymmetry breaking. The generic appearance of R symmetry in dynamical supersymmetry breaking is used to implement Peccei-Quinn symmetry. Acceptable μ\mu and BB terms as well as the large symmetry breaking scale are induced in the presence of nonrenormalizable interactions. Cosmological consequences of this scheme turn out to yield constraints on the PQ symmetry breaking scale and the number of the messenger/heavy quarks. Complexity in introducing non-R Peccei-Quinn symmetry is contrasted with the case of R symmetry.Comment: 10 pages, Revtex. Significantly modified version to apear in Phys. Rev.
    • …
    corecore