6 research outputs found

    Critical Current Peaks at 3BΦ3B_{\Phi} in Superconductors with Columnar Defects: Recrystalizing the Interstitial Glass

    Full text link
    The role of commensurability and the interplay of correlated disorder and interactions on vortex dynamics in the presence of columnar pins is studied via molecular dynamics simulations. Simulations of dynamics reveal substantial caging effects and a non-monotonic dependence of the critical current with enhancements near integer values of the matching field BÏ•B_{\phi} and 3BÏ•3B_{\phi} in agreement with experiments on the cuprates. We find qualitative differences in the phase diagram for small and large values of the matching field.Comment: 5 pages, 4 figures (3 color

    CD -27°11535 : evidence for a triple system in the β Pictoris moving group

    No full text
    Funding: This work was supported in part by NASA grants NNX14AJ80G, 80NSSC21K0958 (E.L.N. and A.E.P.), and 21-ADAP21-0130 (E.L.N. and A.S.) and authored by employees of Caltech/IPAC under contract No. 80GSFC21R0032 with the National Aeronautics and Space Administration.We present new spatially resolved astrometry and photometry of the CD –27°11535 system, a member of the β Pictoris moving group consisting of two resolved K-type stars on a ∼20 yr orbit. We fit an orbit to relative astrometry measured from NIRC2, GPI, and archival NaCo images, in addition to literature measurements. However, the total mass inferred from this orbit is significantly discrepant from that inferred from stellar evolutionary models using the luminosity of the two stars. We explore two hypotheses that could explain this discrepant mass sum: a discrepant parallax measurement from Gaia due to variability, and the presence of an additional unresolved companion to one of the two components. We find that the ∼20 yr orbit could not bias the parallax measurement, but that variability of the components could produce a large-amplitude astrometric motion, an effect that cannot be quantified exactly without the individual Gaia measurements. The discrepancy could also be explained by an additional star in the system. We jointly fit the astrometric and photometric measurements of the system to test different binary and triple architectures for the system. Depending on the set of evolutionary models used, we find an improved goodness of fit for a triple system architecture that includes a low-mass (M = 0.177 ± 0.055 M⊙) companion to the primary star. Further studies of this system will be required in order to resolve this discrepancy, either by refining the parallax measurement with a more complex treatment of variability-induced astrometric motion or by detecting a third companion.Publisher PDFPeer reviewe
    corecore