15,310 research outputs found
HepForge: A lightweight development environment for HEP software
Setting up the infrastructure to manage a software project can become a task
as significant writing the software itself. A variety of useful open source
tools are available, such as Web-based viewers for version control systems,
"wikis" for collaborative discussions and bug-tracking systems, but their use
in high-energy physics, outside large collaborations, is insubstantial.
Understandably, physicists would rather do physics than configure project
management tools.
We introduce the CEDAR HepForge system, which provides a lightweight
development environment for HEP software. Services available as part of
HepForge include the above-mentioned tools as well as mailing lists, shell
accounts, archiving of releases and low-maintenance Web space. HepForge also
exists to promote best-practice software development methods and to provide a
central repository for re-usable HEP software and phenomenology codes.Comment: 3 pages, 0 figures. To be published in proceedings of CHEP06. Refers
to the HepForge facility at http://hepforge.cedar.ac.u
A Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site ordered SmBaMn2O6
Soft X-ray resonant powder diffraction has been performed at the Mn L2,3
edges of A-site ordered SmBaMn2O6. The energy and polarization dependence of
the (1/2 1/2 0) reflection provide direct evidence for a (x2-z2)/(y2-z2) type
orbital ordering in contrast to the single layer manganite. The temperature
dependence of the reflection indicates an orbital reorientation transition at
210 K, below which the charge and orbital ordered MnO2 sheets show AAAA type of
stacking. The concurring reduction of the ferromagnetic super exchange
correlations leads to further charge localization
HepData and JetWeb: HEP data archiving and model validation
The CEDAR collaboration is extending and combining the JetWeb and HepData
systems to provide a single service for tuning and validating models of
high-energy physics processes. The centrepiece of this activity is the fitting
by JetWeb of observables computed from Monte Carlo event generator events
against their experimentally determined distributions, as stored in HepData.
Caching the results of the JetWeb simulation and comparison stages provides a
single cumulative database of event generator tunings, fitted against a wide
range of experimental quantities. An important feature of this integration is a
family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0
Benefits and challenges of transitioning preterm infants to at-breast feedings
Upon hospital discharge it is not unusual for mothers of preterm infants to continue to meet all or most of their infants' nutritional needs through bottle feedings of expressed breast milk (EBM) because of infants' physiological immaturity and maternal concerns with an inadequacy of milk supply. Although for some mothers the challenge of transitioning the infant to feeding at the breast may be beyond their ability and resources, for others it appears to be based on a conscious choice. Mothers are often unaware of the advantages of breastfeeding at the breast. The purpose of this article is to examine some of the factors that may contribute to the inability and resistance of mothers to transition their preterm infants, and to report on the potential short and long-term advantages associated with feeding at the breast as opposed to feeding bottles of EBM
A Serendipitous XMM-Newton Observation of the Intermediate Polar WX Pyx
We briefly describe a serendipitous observation of the little-studied
intermediate polar WX Pyx using XMM-Newton. The X-ray spin period is 1557.3
sec, confirming the optical period published in 1996. An orbital period of
approximately 5.54 hr is inferred from the separation of the spin-orbit
sidelobe components. The soft and hard band spin-folded light curves are nearly
sinusoidal in shape. The best-fit spectrum is consistent with a bremsstrahlung
temperature of about 18 keV. An upper limit of approximately 300 eV is assigned
to the presence of Fe line emission. WX Pyx lies near TX and TV Col in the
P_spin-P_orb plane.Comment: 5 pages, 5 figs; accepted A&A 2004 Dec
Recommended from our members
Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role
of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque
morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused
moderate virus attenuation. However, all mutants
eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and
non-infected ticks, during co-feeding on local rodents
Global adaptation in networks of selfish components: emergent associative memory at the system scale
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning
Dark Matter and Dark Radiation
We explore the feasibility and astrophysical consequences of a new long-range
U(1) gauge field ("dark electromagnetism") that couples only to dark matter,
not to the Standard Model. The dark matter consists of an equal number of
positive and negative charges under the new force, but annihilations are
suppressed if the dark matter mass is sufficiently high and the dark
fine-structure constant is sufficiently small. The correct relic
abundance can be obtained if the dark matter also couples to the conventional
weak interactions, and we verify that this is consistent with particle-physics
constraints. The primary limit on comes from the demand that the
dark matter be effectively collisionless in galactic dynamics, which implies
for TeV-scale dark matter. These values are
easily compatible with constraints from structure formation and primordial
nucleosynthesis. We raise the prospect of interesting new plasma effects in
dark matter dynamics, which remain to be explored.Comment: 14 pages, 6 figures Updated equations and figure
- …