53 research outputs found

    Single-phase media hydrodynamics and heat transfer in heat exchangers with twisted profile tubes

    Full text link
    A profiled heat exchanger tube is the one in which some features have been incorporated into the tube geometry for heat transfer enhancement. They offer a perspective method of steam turbine shell-and-tube heat exchangers improvement. Twisted profile tubes (TPT) are widely used in power engineering. This paper presents some results of experimental and theoretical research of hydrodynamics and heat transfer in TPTs. It is revealed that the heat transfer coefficient for water flow in a TPT increases up to 80% compared to that of a plain tube. With a rise of media Reynolds number, the heat transfer rate in a TPT decreases in comparison to that of a plain tube, but for air flow in a TPT the heat transfer coefficients ratio does not depend on the Reynolds number value. Water flow hydraulic losses in TPTs increase from 15 to 100% depending on the tube profile parameters. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Development of a procedure for substantiating replacement terms for the condenser tubes of steam turbine installations

    Full text link
    Results obtained from elaboration of a procedure for estimating replacement terms for the condenser tube systems of steam turbine installations are presented. Censored data processing methods are used in performing statistical assessment of replacement terms. The service life of condenser tubes blanked off in the course of turbine operation is assumed to be known (complete operation time), and that for tubes blanked off during the turbine repair process is assumed to be undetermined (censored operation time). The criterion for estimating the replacement term for a condenser tube system is defined as the ratio between the number of tubes blanked off during a repair and in the course of turbine operation. The procedure is validated by the results from a study on analyzing the damageability of tubes made of different materials for the condensers of 11 turbines with capacities ranging from 25 to 500 MW. © 2013 Pleiades Publishing, Ltd

    Heat transfer augmentation during water steam condensation on twisted profile tubes

    Full text link
    Some results are presented of experimental and theoretical research of hydrodynamics and heat transfer during condensation of water steam (both stationary and slowly moving) on twisted profile tubes (TPT). For a heat transfer coefficient during condensation of stationary steam on TPT two characteristic areas were observed. At small values of condensate film Reynolds numbers a TPT heat transfer coefficient can be 10-15% below that of the plain tubes depending on profile parameters. With the rise of both condensate film Reynolds number and profile parameter h/s heat transfer coefficient increases up to 50% in comparison to a plain tube. During slowly moving steam condensation the TPT heat transfer coefficient increases up to 70% as compared to a plain tube. Conducted research and industrial tests results showed that the assured effect of a heat transfer coefficient increase in TPT heat exchangers could reach for turbine condensers 15%, for low cycle heaters 35-40%. The heat exchangers hydraulic resistance increases by 40-70%. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    An Expert System for Diagnostics and Estimation of Steam Turbine Components’ Condition

    Full text link
    This article describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems’ components. The expert system is based on Bayes’ theorem and permits one to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach, the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, and the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 pieces of evidence (indications); the procedures are also designated for 20 state parameters’ estimation. Similar knowledge bases containing the diagnostic features and fault hypotheses are formulated for other technological subsystems of a turbine unit. With the necessary initial information available, a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path, it is the correlation and regression analysis of multifactor relationship between the vibration and the regime parameters; for thermal expansion system, it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit, it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement. With the lack of initial information, the expert system formulates a diagnosis and calculates the probability of faults’ origin

    Computational and Experimental Evaluation of Heat Transfer Intensity in Channels of Complex Configuration for Gas Flow with Different Levels of Turbulence

    Full text link
    Disclosure of the physical mechanism of the influence of the turbulence intensity of gas flows on the heat transfer level in pipes of different configurations is an urgent task in the field of heat and power engineering. A brief overview of the literature on this topic is given in the article. A description of the boundary conditions for modeling is presented. The main characteristics of the experimental stand and measuring instruments are described. The purpose of this study is to study the effect of the initial turbulence level of a stationary gas flow on the heat transfer intensity in long pipes with different cross sections. The study is carried out using numerical simulation. The simulation results are qualitatively confirmed using experimental data. The values of the local heat transfer coefficient are shown to increase from 5 to 17% with increasing turbulence intensity (from 2 to 10%) in pipes with different cross sections. The heat transfer intensity in a triangular pipe is found to increase up to 30% compared to a round pipe. It is revealed that there is an up to 15% suppression of heat transfer in a square pipe compared to a round pipe. The data obtained may be useful for the design of flow paths and gas exchange systems for power machines and installations. © 2021 Institute of Physics Publishing. All rights reserved

    Turbine Diagnostics: Algorithms Adaptation Problems

    Full text link
    Enterprises of energy equipment and operational utilities set sights on diagnostic systems. This is necessary for state control and maintenance planning of steam turbines. It is useful for digitalization purposes too. So far, some mathematical systems are already used. Algorithms for flow part, heat expansion systems, control systems, vibration-based diagnostics and auxiliary equipment have already been designed. We have designed algorithms just in principle. We met difficulties adapting them for the PT-75/80-90 turbine. Firstly, we should connect them to a single interface. Secondly, adaptation should include features of the equipment, its state (if not new), even operating conditions. Diagnostic signs for each turbine are the most important. We define them based on the operational data. When adapting the algorithms, we reconsider the signs list. We also estimate its coefficients of importance again. This requires experts to study designs, calculations, and modelling. We also analyzed a large amount of operational data at various power plants. To define the state we use tests. Adapting is based on the modes of a specific power station. Following this strategy, we adapt general algorithms for various turbines. © 2020 WIT Press
    corecore