74 research outputs found

    Are the Tails of Percolation Thresholds Gaussians ?

    Full text link
    The probability distribution of percolation thresholds in finite lattices were first believed to follow a normal Gaussian behaviour. With increasing computer power and more efficient simulational techniques, this belief turned to a stretched exponential behaviour, instead. Here, based on a further improvement of Monte Carlo data, we show evidences that this question is not yet answered at all.Comment: 7 pages including 3 figure

    Ginzburg-Landau model with small pinning domains

    Full text link
    We consider a Ginzburg-Landau type energy with a piecewise constant pinning term aa in the potential (a2−∣u∣2)2(a^2 - |u|^2)^2. The function aa is different from 1 only on finitely many disjoint domains, called the {\it pinning domains}. These pinning domains model small impurities in a homogeneous superconductor and shrink to single points in the limit →ˇ0\v\to0; here, \v is the inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth simply connected domain Ω⊂C\Omega \subset \mathbb{C} with Dirichlet boundary condition gg on \d \O, with topological degree {\rm deg}_{\d \O} (g) = d >0. Our main result is that, for small \v, minimizers have dd distinct zeros (vortices) which are inside the pinning domains and they have a degree equal to 1. The question of finding the locations of the pinning domains with vortices is reduced to a discrete minimization problem for a finite-dimensional functional of renormalized energy. We also find the position of the vortices inside the pinning domains and show that, asymptotically, this position is determined by {\it local renormalized energy} which does not depend on the external boundary conditions.Comment: 39 page

    Efficient Monte Carlo algorithm and high-precision results for percolation

    Full text link
    We present a new Monte Carlo algorithm for studying site or bond percolation on any lattice. The algorithm allows us to calculate quantities such as the cluster size distribution or spanning probability over the entire range of site or bond occupation probabilities from zero to one in a single run which takes an amount of time scaling linearly with the number of sites on the lattice. We use our algorithm to determine that the percolation transition occurs at occupation probability 0.59274621(13) for site percolation on the square lattice and to provide clear numerical confirmation of the conjectured 4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this version, plus updated figures for the position of the percolation transitio

    A fast Monte Carlo algorithm for site or bond percolation

    Full text link
    We describe in detail a new and highly efficient algorithm for studying site or bond percolation on any lattice. The algorithm can measure an observable quantity in a percolation system for all values of the site or bond occupation probability from zero to one in an amount of time which scales linearly with the size of the system. We demonstrate our algorithm by using it to investigate a number of issues in percolation theory, including the position of the percolation transition for site percolation on the square lattice, the stretched exponential behavior of spanning probabilities away from the critical point, and the size of the giant component for site percolation on random graphs.Comment: 17 pages, 13 figures. Corrections and some additional material in this version. Accompanying material can be found on the web at http://www.santafe.edu/~mark/percolation

    Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast

    Get PDF
    We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω)L^\infty(\Omega), Ω⊂Rd\Omega \subset \R^d) coefficients a(x)a(x) that, in particular, model media with non-separated scales and high contrast in material properties. We define the flux norm as the L2L^2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H1H^1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (e.g., piecewise polynomial). We refer to this property as the {\it transfer property}. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities which play the same role in our approach as the div-curl lemma in classical homogenization.Comment: Accepted for publication in Archives for Rational Mechanics and Analysi
    • …
    corecore