516 research outputs found

    Evidence for "Propeller" Effects In X-ray Pulsars GX 1+4 And GROJ1744-28

    Get PDF
    We present observational evidence for "propeller" effects in two X-ray pulsars, GX 1+4 and GROJ1744-28. Both sources were monitored regularly by the Rossi X-ray Timing Explorer (RXTE) throughout a decaying period in the X-ray brightness. Quite remarkably, strong X-ray pulsation became unmeasurable when total X-ray flux had dropped below a certain threshold. Such a phenomenon is a clear indication of the propeller effects which take place when pulsar magnetosphere grows beyond the co-rotation radius as a result of the decrease in mass accretion rate and centrifugal force prevents accreting matter from reaching the magnetic poles. The entire process should simply reverse as the accretion rate increases. Indeed, steady X-ray pulsation was reestablished as the sources emerged from the non-pulsating faint state. These data allow us to directly derive the surface polar magnetic field strength for both pulsars: 3.1E+13 G for GX 1+4 and 2.4E+11 G for GROJ1744-28. The results are likely to be accurate to within a factor of 2, with the total uncertainty dominated by the uncertainty in estimating the distances to the sources. Possible mechanisms for the persistent emission observed in the faint state are discussed in light of the extreme magnetic properties of the sources.Comment: 12 pages including 3 ps figures. To appear in ApJ Letters Vol. 48

    Arrival processes in port modeling: insights from a case study

    Get PDF
    This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency.supply chain management;logistics;simulation;transportation;case study

    Relativistic Particle Acceleration in a Folded Current Sheet

    Full text link
    Two-dimensional particle simulations of a relativistic Harris current sheet of pair plasmashave demonstrated that the system is unstable to the relativistic drift kink instability (RDKI) and that a new kind of acceleration process takes place in the deformed current sheet. This process contributes to the generation of non-thermal particles and contributes to the fast magnetic dissipation in the current sheet structure. The acceleration mechanism and a brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure

    Time Variability in the X-ray Nebula Powered by Pulsar B1509-58

    Full text link
    We use new and archival Chandra and ROSAT data to study the time variability of the X-ray emission from the pulsar wind nebula (PWN) powered by PSR B1509-58 on timescales of one week to twelve years. There is variability in the size, number, and brightness of compact knots appearing within 20" of the pulsar, with at least one knot showing a possible outflow velocity of ~0.6c (assuming a distance to the source of 5.2 kpc). The transient nature of these knots may indicate that they are produced by turbulence in the flows surrounding the pulsar. A previously identified prominent jet extending 12 pc to the southeast of the pulsar increased in brightness by 30% over 9 years; apparent outflow of material along this jet is observed with a velocity of ~0.5c. However, outflow alone cannot account for the changes in the jet on such short timescales. Magnetohydrodynamic sausage or kink instabilities are feasible explanations for the jet variability with timescale of ~1.3-2 years. An arc structure, located 30"-45" north of the pulsar, shows transverse structural variations and appears to have moved inward with a velocity of ~0.03c over three years. The overall structure and brightness of the diffuse PWN exterior to this arc and excluding the jet has remained the same over the twelve year span. The photon indices of the diffuse PWN and possibly the jet steepen with increasing radius, likely indicating synchrotron cooling at X-ray energies.Comment: accepted to ApJ, 14 pages, 8 figure

    Lorentz invariance, local field theory, and faster-than-light particles

    Get PDF
    The quantum theory of faster-than-light particles is studied following the earlier classical theory of Bilanuik, Deshpande, and Sudarshan and of Terletski. The ingenious scheme of quantization formulated by Feinberg is seen, on closer examination, to violate Lorentz invariance. Another scheme of quantization involving a new physical postulate is formulated. The consistency and novel features of this formulation are discussed in some detail

    Arrival processes in port modeling: insights from a case study

    Get PDF
    This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency

    On the effect of ship arrival processes on jetty and storage capacity

    Get PDF
    Ports provide jetty facilities for ships to load and unload their cargo. Jetty capacity is costly and therefore limited, causing delays for arriving ships. However, ship delays are also costly, so terminal operators attempt to minimize their number and duration. Here, simulation has proved to be a very suitable tool. However, in port simulation models, the impact of the arrival process of ships on the model outcomes tends to be underestimated. This report considers three arrival processes: stock-controlled, equidistant, and uncontrolled. We assess how their deployment in a port simulation model,based on data from a real case study, affects the efficiency of the loading and unloading process, making a case for careful modeling of arrival processes in port simulations. Uncontrolled, which is an assumed arrival process property in many client-oriented simulations, actually performs worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. Additional control of the arrival process through the application of a priority scheme in processing ships further impacts efficiency in all three cases
    • …
    corecore