713 research outputs found

    Correlations between resonances in a statistical scattering model

    Full text link
    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K<10. The coupling to the continuum induces two main effects, due to which the distorted system differs from a chaotic system (described by a Gaussian ensemble): 1. The width distribution for large coupling becomes broader than the corresponding χK2\chi^2_K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels.Comment: 23 pages, 7 Postscript figures. Submitted to Phys. Rev. E, Jan. 9

    Comments on ``A note on first-order formalism and odd-derivative actions'' by S. Deser

    Full text link
    We argue that the obstacles to having a first-order formalism for odd-derivative actions presented in a pedagogical note by Deser are based on examples which are not first-order forms of the original actions. The general derivation of an equivalent first-order form of the original second-order action is illustrated using the example of topologically massive electrodynamics (TME). The correct first-order formulations of the TME model keep intact the gauge invariance presented in its second-order form demonstrating that the gauge invariance is not lost in the Ostrogradsky process.Comment: 6 pages, references are adde

    Field evolution of the magnetic structures in Er2_2Ti2_2O7_7 through the critical point

    Full text link
    We have measured neutron diffraction patterns in a single crystal sample of the pyrochlore compound Er2_2Ti2_2O7_7 in the antiferromagnetic phase (T=0.3\,K), as a function of the magnetic field, up to 6\,T, applied along the [110] direction. We determine all the characteristics of the magnetic structure throughout the quantum critical point at HcH_c=2\,T. As a main result, all Er moments align along the field at HcH_c and their values reach a minimum. Using a four-sublattice self-consistent calculation, we show that the evolution of the magnetic structure and the value of the critical field are rather well reproduced using the same anisotropic exchange tensor as that accounting for the local paramagnetic susceptibility. In contrast, an isotropic exchange tensor does not match the moment variations through the critical point. The model also accounts semi-quantitatively for other experimental data previously measured, such as the field dependence of the heat capacity, energy of the dispersionless inelastic modes and transition temperature.Comment: 7 pages; 8 figure

    Quantum Phase and Quantum Phase Operators: Some Physics and Some History

    Get PDF
    After reviewing the role of phase in quantum mechanics, I discuss, with the aid of a number of unpublished documents, the development of quantum phase operators in the 1960's. Interwoven in the discussion are the critical physics questions of the field: Are there (unique) quantum phase operators and are there quantum systems which can determine their nature? I conclude with a critique of recent proposals which have shed new light on the problem.Comment: 19 pages, 2 Figs. taken from published articles, LaTeX, to be published in Physica Scripta, Los Alamos preprint LA-UR-92-352

    Geriatric Emergency Department Innovations: Transitional Care Nurses and Hospital Use

    Get PDF
    OBJECTIVES: To examine the effect of an emergency department (ED)-based transitional care nurse (TCN) on hospital use. DESIGN: Prospective observational cohort. SETTING: Three U.S. (NY, IL, NJ) EDs from January 1, 2013, to June 30, 2015. PARTICIPANTS: Individuals aged 65 and older in the ED (N = 57,287). INTERVENTION: The intervention was first TCN contact. Controls never saw a TCN during the study period. MEASUREMENTS: We examined sociodemographic and clinical characteristics associated with TCN use and outcomes. The primary outcome was inpatient admission during the index ED visit (admission on Day 0). Secondary outcomes included cumulative 30-day admission (any admission on Days 0-30) and 72-hour ED revisits. RESULTS: A TCN saw 5,930 (10%) individuals, 42% of whom were admitted. After accounting for observed selection bias using entropy balance, results showed that when compared to controls, TCN contact was associated with lower risk of admission (site 1: -9.9% risk of inpatient admission, 95% confidence interval (CI) = -12.3% to -7.5%; site 2: -16.5%, 95% CI = -18.7% to -14.2%; site 3: -4.7%, 95% CI = -7.5% to -2.0%). Participants with TCN contact had greater risk of a 72-hour ED revisit at two sites (site 1: 1.5%, 95% CI = 0.7-2.3%; site 2: 1.4%, 95% CI = 0.7-2.1%). Risk of any admission within 30 days of the index ED visit also remained lower for TCN patients at both these sites (site 1: -7.8%, 95% CI = -10.3% to -5.3%; site 2: -13.8%, 95% CI = -16.1% to -11.6%). CONCLUSION: Targeted evaluation by geriatric ED transitions of care staff may be an effective delivery innovation to reduce risk of inpatient admission

    General relativistic corrections to the Sagnac effect

    Get PDF
    The difference in travel time of corotating and counter-rotating light waves in the field of a central massive and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field. Estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement is in the order of concrete possibilities.Comment: REVTex, accepted for publication on Phys. Rev.

    General relativistic Sagnac formula revised

    Full text link
    The Sagnac effect is a time or phase shift observed between two beams of light traveling in opposite directions in a rotating interferometer. We show that the standard description of this effect within the framework of general relativity misses the effect of deflection of light due to rotational inertial forces. We derive the necessary modification and demonstrate it through a detailed analysis of the square Sagnac interferometer rotating about its symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac interferometer in the synchronization procedure of remote clocks as well as its analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure

    Two Mathematically Equivalent Versions of Maxwell's Equations

    Full text link
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell's equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers. The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source. We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and the Dirac equations are actually two distinct spin-12\tfrac{1}{2} particle equations.Comment: Appeared: Foundations of Physic
    • …
    corecore