31 research outputs found

    Exploring interannual variability in potential spawning habitat for Atlantic bluefin tuna in the Slope Sea

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypina, I. I., Dotzel, M. M., Pratt, L. J., Hernandez, C. M., & Llopiz, J. K. Exploring interannual variability in potential spawning habitat for Atlantic bluefin tuna in the Slope Sea. Progress in Oceanography, 192, (2021): 102514, https://doi.org/10.1016/j.pocean.2021.102514.The Slope Sea in the Northwest Atlantic Ocean, located between the Gulf Stream and the continental shelf of the Northeast United States, is a recently-documented possible major spawning ground for Atlantic bluefin tuna (Thunnus thynnus). Larval surveys and a habitat modeling study have shown that suitable spawning habitat occurs in the Slope Sea, but the degree to which this habitat varies interannually is an open question. Here, we perform a decade-long (2009–2018) numerical modeling analysis, with simulated larvae released uniformly throughout the Slope Sea, to investigate the interannual variability in the water temperature and circulation criteria deemed necessary for successful spawning. We also quantify the influence of Gulf Stream meanders and overshoot events on larval retention and their effect on habitat suitability rates throughout the Slope Sea, defined as the percentage of simulated larvae released at a given location that satisfy criteria related to water temperature and retention near nursery habitat. Average environmental oceanographic conditions over the decade are most favorable in the western part of the Slope Sea, specifically in the Slope Gyre and away from the immediate vicinity of the Gulf Stream. Variability in domain- and summertime-averaged yearly spawning habitat suitability rates is up to 25% of the mean decadal-averaged values. Yearly habitat suitability correlates strongly with the Gulf Stream overshoot but does not correlate well with other oceanographic variables or indices, so an overshoot index can be used as a sole oceanographic proxy for predicting yearly bluefin spawning habitat suitability in the Slope Sea. Selective spawning can weaken the correlation between habitat suitability and Gulf Stream overshoot. Effort should be put towards collecting observational data against which we could validate our findings.This work was funded by a US National Science Foundation (NSF) grant (OCE-1558806) awarded to IIR, LJP, and JKL. MMD was supported by an NSF Graduate Research Fellowship. CMH was partially supported by the Adelaide and Charles Link Foundation and the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center

    Hierarchical ZSM‐5 catalysts: The effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction

    Get PDF
    We present the effect of different combinations of intracrystalline pore systems in hierarchical ZSM‐5 zeolites on their performance as MTO catalysts. We prepared ZSM‐5 zeolites with additional intracrystalline mesoporous, intracrystalline macropores and a novel ZSM‐5 type zeolite with intracrystalline meso and macropores. The catalytic results showed that both used catalysts with mesopores and macropores exhibited three times longer catalyst lifetime compared to a conventional catalyst. However, TGA analysis of the deactivated catalysts showed much larger coke content in the mesoporous catalyst than in the macroporous catalyst. Consequently, macropores predominantly led to reduced coke formation rate while additional mesopores predominantly enhanced the resistance against deactivation by coke. Combining both intracrystalline meso and macropores in one catalyst lead to a tenfold increase in catalyst lifetime. Besides the effect on the catalyst lifetime there was also a strong effect of the additional pore systems on the selectivity of the catalysts. The catalysts containing mesopores showed reduced selectivity to short chain olefins and increased selectivity to larger hydrocarbons in comparison to the catalysts without a mesopores system

    Aggregation of slightly buoyant microplastics in 3D vortex flows

    Get PDF
    Although the movement and aggregation of microplastics at the ocean surface have been well studied, less is known about the subsurface. Within the Maxey–Riley framework governing the movement of small, rigid spheres with high drag in fluid, the aggregation of buoyant particles is encouraged in vorticity-dominated regions. We explore this process in an idealized model that is qualitatively reminiscent of a 3D eddy with an azimuthal and overturning circulation. In the axially symmetric state, buoyant spherical particles that do not accumulate at the top boundary are attracted to a loop consisting of periodic orbits. Such a loop exists when drag on the particle is sufficiently strong. For small, slightly buoyant particles, this loop is located close to the periodic fluid parcel trajectory. If the symmetric flow is perturbed by a symmetry-breaking disturbance, additional attractors for small, rigid, slightly buoyant particles may arise near periodic orbits of fluid parcels within the resonance zones created by the disturbance. Disturbances with periodic or quasiperiodic time dependence may produce even more attractors, with a shape and location that recurs periodically. However, not all such loops attract, and rigid particles released in the vicinity of one loop may instead be attracted to a nearby attractor. Examples are presented along with mappings of the respective basins of attraction.</p

    Synthesis and Characterisation of Hierarchically Structured Titanium Silicalite‐1 Zeolites with Large Intracrystalline Macropores

    Get PDF
    The successful synthesis of hierarchically structured titanium silicalite‐1 (TS‐1) with large intracrystalline macropores by steam‐assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation‐based ptychographic X‐ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon‐to‐titanium ratio of the macroporous TS‐1 samples was successfully tuned from 100 to 44. The hierarchically structured TS‐1 exhibited high activity in the liquid phase epoxidation of 2‐octene with hydrogen peroxide. The hierarchically structured TS‐1 surpassed a conventional nano‐sized TS‐1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions

    Augmenting the Eye of the Beholder: Exploring the Strategic Potential of Augmented Reality to Enhance Online Service Experiences

    Get PDF
    Driven by the proliferation of augmented reality (AR) technologies, many firms are pursuing a strategy of service augmentation to enhance customers’ online service experiences. Drawing on situated cognition theory, the authors show that AR - based service augmentation enhances customer value perceptions by simultaneously providing simulated physical control and environmental embedding. The resulting authentic situated experience, manifested in a feeling of spatial presence, funct ions as a mediator and also predicts customer decision comfort. Furthermore, the effect of spatial presence on utilitarian value perceptions is greater for customers who are disposed toward verbal rather than visual information processing, and the positive effect on decision comfort is attenuated by customers’ privacy concerns
    corecore