58 research outputs found

    An Atypical Form of αB-crystallin Is Present in High Concentration in Some Human Cataractous Lenses IDENTIFICATION AND CHARACTERIZATION OF ABERRANT N- AND C-TERMINAL PROCESSING

    Get PDF
    Two unique polypeptides, 22.4 and 16.4 kDa, were prominent in some human cataracts. Both proteins were identified as modified forms of the small heat shock protein, αB-crystallin. The concentration of total αB-crystallin in most of these cataracts was significantly increased. The 22.4-kDa protein was subsequently designated as αBg. Mass spectrometric analyses of tryptic and Asp-N digests showed αBg is αB-crystallin minus the C-terminal lysine. αBg constituted 10–90% of the total αB-crystallin in these cataracts and was preferentially phosphorylated over the typical form of αB-crystallin. Human αBg and αB-crystallin were cloned and expressed inEscherichia coli. The differences in electrophoretic mobility and the large difference in native pI values suggest some structural differences exist. The chaperone-like activity of recombinant human αBg was comparable to that of recombinant human αB-crystallin in preventing the aggregation of lactalbumin induced by dithiothreitol. The mechanism involved in generating αBg is not known, but a premature termination of the αB-crystallin gene was ruled out by sequencing the polymerase chain reaction products of the last exon for the αB-crystallin gene from lenses containing αBg. The 16.4-kDa protein was an N-terminally truncated fragment of αBg. The high concentration of αB-crystallin in these cataracts is the first observation of this kind in human lenses

    An Objective Scatter Index Based on Double-Pass Retinal Images of a Point Source to Classify Cataracts

    Get PDF
    PURPOSE: To propose a new objective scatter index (OSI) based in the analysis of double-pass images of a point source to rank and classify cataract patients. This classification scheme is compared with a current subjective system. METHODS: We selected a population including a group of normal young eyes as control and patients diagnosed with cataract (grades NO2, NO3 and NO4) according to the Lens Opacities Classification System (LOCS III). For each eye, we recorded double-pass retinal images of a point source. In each patient, we determined an objective scatter index (OSI) as the ratio of the intensity at an eccentric location in the image and the central part. This index provides information on the relevant forward scatter affecting vision. Since the double-pass retinal images are affected by both ocular aberrations and intraocular scattering, an analysis was performed to show the ranges of contributions of aberrations to the OSI. RESULTS: We used the OSI values to classify each eye according to the degree of scatter. The young normal eyes of the control group had OSI values below 1, while the OSI for subjects in LOCS grade II were around 1 to 2. The use of the objective index showed some of the weakness of subjective classification schemes. In particular, several subjects initially classified independently as grade NO2 or NO3 had similar OSI values, and in some cases even higher than subjects classified as grade NO4. A new classification scheme based in OSI is proposed. CONCLUSIONS: We introduced an objective index based in the analysis of double-pass retinal images to classify cataract patients. The method is robust and fully based in objective measurements; i.e., not depending on subjective decisions. This procedure could be used in combination with standard current methods to improve cataract patient surgery scheduling
    • 

    corecore