2,024 research outputs found

    Transport Properties of a spinon Fermi surface coupled to a U(1) gauge field

    Full text link
    With the organic compound κ\kappa-(BEDT-TTF)2_2-Cu2_2(CN)3_3 in mind, we consider a spin liquid system where a spinon Fermi surface is coupled to a U(1) gauge field. Using the non-equilibrium Green's function formalism, we derive the Quantum Boltzmann Equation (QBE) for this system. In this system, however, one cannot a priori assume the existence of Landau quasiparticles. We show that even without this assumption one can still derive a linearized equation for a generalized distribution function. We show that the divergence of the effective mass and of the finite temperature self-energy do not enter these transport coefficients and thus they are well-defined. Moreover, using a variational method, we calculate the temperature dependence of the spin resistivity and thermal conductivity of this system.Comment: 12 page

    Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils.

    Get PDF
    A direct titin-thick filament interaction in certain regions of the A band is suggested by results using four new monoclonal antibodies specific for titin in immunoelectron microscopy. Antibodies T30, T31 and T32 identify quasi-repeats in the titin molecule characterized by a 42–43 nm repeat spacing. These stripes seem to coincide with striations established by others on negatively stained cryosections of the A band. Antibodies T30 and T32 recognize epitopes matching five or two of the seven striations per half sacromere known to harbor both the myosin-associated C-protein and an 86K (K = 10(3) Mr) protein. Antibody T31 labels two stripes in the P zone, which correspond to the two positions where decoration is seen with 86K protein, but not with C-protein. The single titin epitope defined by antibody T33 is located 55 nm prior to the center of the M band. This position seems to coincide with the M7 striation defined by others on negatively stained A bands. The T33 epitope position proves that the titin molecule, which is known to be anchored at the Z line, also penetrates into the complex architecture of the M band. The titin epitopes described here enable us to begin to correlate known ultrastructural aspects of the interior part of the A band with the disposition of the titin molecule in the sarcomere. They raise the question of whether there is a regular interaction pattern between titin and the thick filaments

    High-resolution saturation spectroscopy of singly-ionized iron with a pulsed uv laser

    Full text link
    We describe the design and realization of a scheme for uv laser spectroscopy of singly-ionized iron (Fe II) with very high resolution. A buffer-gas cooled laser ablation source is used to provide a plasma close to room temperature with a high density of Fe II. We combine this with a scheme for pulsed-laser saturation spectroscopy to yield sub-Doppler resolution. In a demonstration experiment, we have examined an Fe II transition near 260 nm, attaining a linewidth of about 250 MHz. The method is well-suited to measuring transition frequencies and hyperfine structure. It could also be used to measure small isotope shifts in isotope-enriched samples.Comment: 9 pages, 5 figures, updated Fig. 3. For submission to J. Phys.

    Scaling of spontaneous rotation with temperature and plasma current in tokamaks

    Get PDF
    Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10kms1MAkeV110\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.Comment: 5 pages, 3 figure

    Diffusivity and configurational entropy maxima in short range attractive colloids

    Full text link
    We study tagged particle diffusion at large packing fractions, for a model of particles interacting with a generalized Lennard-Jones 2n-n potential, with large n. The resulting short-range potential mimics interactions in colloidal systems. In agreement with previous calculations for short-range potential, we observe a diffusivity maximum as a function of temperature. By studying the temperature dependence of the configurational entropy -- which we evaluate with two different methods -- we show that a configurational entropy maximum is observed at a temperature close to that of the diffusivity maximum. Our findings suggest a relationbetween dynamics and number of distinct states for short-range potentials.Comment: 4 pages, 3 figures, submited to Physical Review Lette

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Inherent-Structure Dynamics and Diffusion in Liquids

    Full text link
    The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR

    Energy landscapes, ideal glasses, and their equation of state

    Full text link
    Using the inherent structure formalism originally proposed by Stillinger and Weber [Phys. Rev. A 25, 978 (1982)], we generalize the thermodynamics of an energy landscape that has an ideal glass transition and derive the consequences for its equation of state. In doing so, we identify a separation of configurational and vibrational contributions to the pressure that corresponds with simulation studies performed in the inherent structure formalism. We develop an elementary model of landscapes appropriate to simple liquids which is based on the scaling properties of the soft-sphere potential complemented with a mean-field attraction. The resulting equation of state provides an accurate representation of simulation data for the Lennard-Jones fluid, suggesting the usefulness of a landscape-based formulation of supercooled liquid thermodynamics. Finally, we consider the implications of both the general theory and the model with respect to the so-called Sastry density and the ideal glass transition. Our analysis shows that a quantitative connection can be made between properties of the landscape and a simulation-determined Sastry density, and it emphasizes the distinction between an ideal glass transition and a Kauzmann equal-entropy condition.Comment: 11 pages, 3 figure
    corecore