9,776 research outputs found

    Code Generation for Efficient Query Processing in Managed Runtimes

    Get PDF
    In this paper we examine opportunities arising from the conver-gence of two trends in data management: in-memory database sys-tems (IMDBs), which have received renewed attention following the availability of affordable, very large main memory systems; and language-integrated query, which transparently integrates database queries with programming languages (thus addressing the famous ‘impedance mismatch ’ problem). Language-integrated query not only gives application developers a more convenient way to query external data sources like IMDBs, but also to use the same querying language to query an application’s in-memory collections. The lat-ter offers further transparency to developers as the query language and all data is represented in the data model of the host program-ming language. However, compared to IMDBs, this additional free-dom comes at a higher cost for query evaluation. Our vision is to improve in-memory query processing of application objects by introducing database technologies to managed runtimes. We focus on querying and we leverage query compilation to im-prove query processing on application objects. We explore dif-ferent query compilation strategies and study how they improve the performance of query processing over application data. We take C] as the host programming language as it supports language-integrated query through the LINQ framework. Our techniques de-liver significant performance improvements over the default LINQ implementation. Our work makes important first steps towards a future where data processing applications will commonly run on machines that can store their entire datasets in-memory, and will be written in a single programming language employing language-integrated query and IMDB-inspired runtimes to provide transparent and highly efficient querying. 1

    Two-lane traffic rules for cellular automata: A systematic approach

    Full text link
    Microscopic modeling of multi-lane traffic is usually done by applying heuristic lane changing rules, and often with unsatisfying results. Recently, a cellular automaton model for two-lane traffic was able to overcome some of these problems and to produce a correct density inversion at densities somewhat below the maximum flow density. In this paper, we summarize different approaches to lane changing and their results, and propose a general scheme, according to which realistic lane changing rules can be developed. We test this scheme by applying it to several different lane changing rules, which, in spite of their differences, generate similar and realistic results. We thus conclude that, for producing realistic results, the logical structure of the lane changing rules, as proposed here, is at least as important as the microscopic details of the rules

    Fundamentals of Traffic Flow

    Full text link
    From single vehicle data a number of new empirical results concerning the density-dependence of the velocity distribution and its moments as well as the characteristics of their temporal fluctuations have been determined. These are utilized for the specification of some fundamental relations of traffic flow and compared with existing traffic theories.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Presence of Many Stable Nonhomogeneous States in an Inertial Car-Following Model

    Full text link
    A new single lane car following model of traffic flow is presented. The model is inertial and free of collisions. It demonstrates experimentally observed features of traffic flow such as the existence of three regimes: free, fluctuative (synchronized) and congested (jammed) flow; bistability of free and fluctuative states in a certain range of densities, which causes the hysteresis in transitions between these states; jumps in the density-flux plane in the fluctuative regime and gradual spatial transition from synchronized to free flow. Our model suggests that in the fluctuative regime there exist many stable states with different wavelengths, and that the velocity fluctuations in the congested flow regime decay approximately according to a power law in time.Comment: 4 pages, 4 figure

    Direct current superconducting quantum interferometers with asymmetric shunt resistors

    Full text link
    We have investigated asymmetrically shunted Nb/Al-AlOx_x/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance RR identical to a comparable symmetric SQUID with R1=R11+R21R^{-1} = R_1^{-1} + R_2^{-1}, we shunted only one of the two Josephson junctions with R=R1,2/2R = R_{1,2}/2. Simulations predict that the optimum energy resolution ϵ\epsilon and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2\,K yielded ϵ32\epsilon \approx 32\,\hbar for an asymmetric SQUID with an inductance of 22pH22\,\rm{pH}. For a comparable symmetric device ϵ=110\epsilon = 110\,\hbar was achieved, confirming our simulation results.Comment: 5 pages, 4 figure

    Breakdown and recovery in traffic flow models

    Full text link
    Most car-following models show a transition from laminar to ``congested'' flow and vice versa. Deterministic models often have a density range where a disturbance needs a sufficiently large critical amplitude to move the flow from the laminar into the congested phase. In stochastic models, it may be assumed that the size of this amplitude gets translated into a waiting time, i.e.\ until fluctuations sufficiently add up to trigger the transition. A recently introduced model of traffic flow however does not show this behavior: in the density regime where the jam solution co-exists with the high-flow state, the intrinsic stochasticity of the model is not sufficient to cause a transition into the jammed regime, at least not within relevant time scales. In addition, models can be differentiated by the stability of the outflow interface. We demonstrate that this additional criterion is not related to the stability of the flow. The combination of these criteria makes it possible to characterize commonalities and differences between many existing models for traffic in a new way

    Discrete stochastic models for traffic flow

    Full text link
    We investigate a probabilistic cellular automaton model which has been introduced recently. This model describes single-lane traffic flow on a ring and generalizes the asymmetric exclusion process models. We study the equilibrium properties and calculate the so-called fundamental diagrams (flow vs.\ density) for parallel dynamics. This is done numerically by computer simulations of the model and by means of an improved mean-field approximation which takes into account short-range correlations. For cars with maximum velocity 1 the simplest non-trivial approximation gives the exact result. For higher velocities the analytical results, obtained by iterated application of the approximation scheme, are in excellent agreement with the numerical simulations.Comment: Revtex, 30 pages, full postscript version (including figures) available by anonymous ftp from "fileserv1.mi.uni-koeln.de" in the directory "pub/incoming/" paper accepted for publication in Phys.Rev.

    Suppression of spin-state transition in epitaxially strained LaCoO_{3}

    Full text link
    Epitaxial thin films of LaCoO_{3} (E-LCO) exhibit ferromagnetic order with a transition temperature T_c = 85 K, while polycrystalline thin LaCoO_{3} films (P-LCO) remain paramagnetic. The temperature-dependent spin-state structure for both E-LCO and P-LCO was studied by x-ray absorption spectroscopy at the Co L_{2,3} and O K edges. Considerable spectral redistributions over temperature are observed for P-LCO. The spectra for E-LCO, on the other hand, do not show any significant changes for temperatures between 30 K and 450 K at both edges, indicating that the spin state remains constant and that the epitaxial strain inhibits any population of the low-spin (S = 0) state with decreasing temperature. This observation identifies an important prerequisite for ferromagnetism in E-LCO thin films.Comment: 5 pages, 5 figures, submitted to Physical Review

    Economics-Based Optimization of Unstable Flows

    Full text link
    As an example for the optimization of unstable flows, we present an economics-based method for deciding the optimal rates at which vehicles are allowed to enter a highway. It exploits the naturally occuring fluctuations of traffic flow and is flexible enough to adapt in real time to the transient flow characteristics of road traffic. Simulations based on realistic parameter values show that this strategy is feasible for naturally occurring traffic, and that even far from optimality, injection policies can improve traffic flow. Moreover, the same method can be applied to the optimization of flows of gases and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397). For related work see http://www.parc.xerox.com/dynamics/ and http://www.theo2.physik.uni-stuttgart.de/helbing.htm
    corecore