447 research outputs found
Exact Results for a Three-Body Reaction-Diffusion System
A system of particles hopping on a line, singly or as merged pairs, and
annihilating in groups of three on encounters, is solved exactly for certain
symmetrical initial conditions. The functional form of the density is nearly
identical to that found in two-body annihilation, and both systems show
non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for
large times.Comment: 10 page
Particle Dynamics in a Mass-Conserving Coalescence Process
We consider a fully asymmetric one-dimensional model with mass-conserving
coalescence. Particles of unit mass enter at one edge of the chain and
coalescence while performing a biased random walk towards the other edge where
they exit. The conserved particle mass acts as a passive scalar in the reaction
process , and allows an exact mapping to a restricted ballistic
surface deposition model for which exact results exist. In particular, the
mass- mass correlation function is exactly known. These results complement
earlier exact results for the process without mass. We introduce a
comprehensive scaling theory for this process. The exact anaytical and
numerical results confirm its validity.Comment: 5 pages, 6 figure
Symmetry and species segregation in diffusion-limited pair annihilation
We consider a system of q diffusing particle species A_1,A_2,...,A_q that are
all equivalent under a symmetry operation. Pairs of particles may annihilate
according to A_i + A_j -> 0 with reaction rates k_{ij} that respect the
symmetry, and without self-annihilation (k_{ii} = 0). In spatial dimensions d >
2 mean-field theory predicts that the total particle density decays as n(t) ~
1/t, provided the system remains spatially uniform. We determine the conditions
on the matrix k under which there exists a critical segregation dimension
d_{seg} below which this uniformity condition is violated; the symmetry between
the species is then locally broken. We argue that in those cases the density
decay slows down to n(t) ~ t^{-d/d_{seg}} for 2 < d < d_{seg}. We show that
when d_{seg} exists, its value can be expressed in terms of the ratio of the
smallest to the largest eigenvalue of k. The existence of a conservation law
(as in the special two-species annihilation A + B -> 0), although sufficient
for segregation, is shown not to be a necessary condition for this phenomenon
to occur. We work out specific examples and present Monte Carlo simulations
compatible with our analytical results.Comment: latex, 19 pages, 3 eps figures include
Model of Cluster Growth and Phase Separation: Exact Results in One Dimension
We present exact results for a lattice model of cluster growth in 1D. The
growth mechanism involves interface hopping and pairwise annihilation
supplemented by spontaneous creation of the stable-phase, +1, regions by
overturning the unstable-phase, -1, spins with probability p. For cluster
coarsening at phase coexistence, p=0, the conventional structure-factor scaling
applies. In this limit our model falls in the class of diffusion-limited
reactions A+A->inert. The +1 cluster size grows diffusively, ~t**(1/2), and the
two-point correlation function obeys scaling. However, for p>0, i.e., for the
dynamics of formation of stable phase from unstable phase, we find that
structure-factor scaling breaks down; the length scale associated with the size
of the growing +1 clusters reflects only the short-distance properties of the
two-point correlations.Comment: 12 page
Contest based on a directed polymer in a random medium
We introduce a simple one-parameter game derived from a model describing the
properties of a directed polymer in a random medium. At his turn, each of the
two players picks a move among two alternatives in order to maximize his final
score, and minimize opponent's return. For a game of length , we find that
the probability distribution of the final score develops a traveling wave
form, , with the wave profile unusually
decaying as a double exponential for large positive and negative . In
addition, as the only parameter in the game is varied, we find a transition
where one player is able to get his maximum theoretical score. By extending
this model, we suggest that the front velocity is selected by the nonlinear
marginal stability mechanism arising in some traveling wave problems for which
the profile decays exponentially, and for which standard traveling wave theory
applies
Condensation phase transitions of symmetric conserved-mass aggregation model on complex networks
We investigate condensation phase transitions of symmetric conserved-mass
aggregation (SCA) model on random networks (RNs) and scale-free networks (SFNs)
with degree distribution . In SCA model, masses diffuse
with unite rate, and unit mass chips off from mass with rate . The
dynamics conserves total mass density . In the steady state, on RNs and
SFNs with for , we numerically show that SCA
model undergoes the same type condensation transitions as those on regular
lattices. However the critical line depends on network
structures. On SFNs with , the fluid phase of exponential mass
distribution completely disappears and no phase transitions occurs. Instead,
the condensation with exponentially decaying background mass distribution
always takes place for any non-zero density. For the existence of the condensed
phase for at the zero density limit, we investigate one
lamb-lion problem on RNs and SFNs. We numerically show that a lamb survives
indefinitely with finite survival probability on RNs and SFNs with ,
and dies out exponentially on SFNs with . The finite life time
of a lamb on SFNs with ensures the existence of the
condensation at the zero density limit on SFNs with at which
direct numerical simulations are practically impossible. At ,
we numerically confirm that complete condensation takes place for any on RNs. Together with the recent study on SFNs, the complete condensation
always occurs on both RNs and SFNs in zero range process with constant hopping
rate.Comment: 6 pages, 6 figure
Approach to Asymptotic Behaviour in the Dynamics of the Trapping Reaction
We consider the trapping reaction A + B -> B in space dimension d=1, where
the A and B particles have diffusion constants D_A, D_B respectively. We
calculate the probability, Q(t), that a given A particle has not yet reacted at
time t. Exploiting a recent formulation in which the B particles are eliminated
from the problem we find, for t -> \infty, , where
is the density of B particles and for .Comment: 8 pages, 2 figures; minor change
The A+B -> 0 annihilation reaction in a quenched random velocity field
Using field-theoretic renormalization group methods the long-time behaviour
of the A+B -> 0 annihilation reaction with equal initial densities n_A(0) =
n_B(0) = n_0 in a quenched random velocity field is studied. At every point (x,
y) of a d-dimensional system the velocity v is parallel or antiparallel to the
x-axis and depends on the coordinates perpendicular to the flow. Assuming that
v(y) have zero mean and short-range correlations in the y-direction we show
that the densities decay asymptotically as n(t) ~ A n_0^(1/2) t^(-(d+3)/8) for
d<3. The universal amplitude A is calculated at first order in \epsilon = 3-d.Comment: 19 pages, LaTeX using IOP-macros, 5 eps-figures. It is shown that the
amplitude of the density is universal, i.e. independent of the reaction rat
Exact Solutions of Anisotropic Diffusion-Limited Reactions with Coagulation and Annihilation
We report exact results for one-dimensional reaction-diffusion models A+A ->
inert, A+A -> A, and A+B -> inert, where in the latter case like particles
coagulate on encounters and move as clusters. Our study emphasized anisotropy
of hopping rates; no changes in universal properties were found, due to
anisotropy, in all three reactions. The method of solution employed mapping
onto a model of coagulating positive integer charges. The dynamical rules were
synchronous, cellular-automaton type. All the asymptotic large-time results for
particle densities were consistent, in the framework of universality, with
other model results with different dynamical rules, when available in the
literature.Comment: 28 pages in plain TeX + 2 PostScript figure
Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension
We study the diffusion-limited process in one dimension, with
finite reaction rates. We develop an approximation scheme based on the method
of Inter-Particle Distribution Functions (IPDF), which was formerly used for
the exact solution of the same process with infinite reaction rate. The
approximation becomes exact in the very early time regime (or the
reaction-controlled limit) and in the long time (diffusion-controlled)
asymptotic limit. For the intermediate time regime, we obtain a simple
interpolative behavior between these two limits. We also study the coalescence
process (with finite reaction rates) with the back reaction , and in
the presence of particle input. In each of these cases the system reaches a
non-trivial steady state with a finite concentration of particles. Theoretical
predictions for the concentration time dependence and for the IPDF are compared
to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j
05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0
- …