research

Contest based on a directed polymer in a random medium

Abstract

We introduce a simple one-parameter game derived from a model describing the properties of a directed polymer in a random medium. At his turn, each of the two players picks a move among two alternatives in order to maximize his final score, and minimize opponent's return. For a game of length nn, we find that the probability distribution of the final score SnS_n develops a traveling wave form, Prob(Sn=m)=f(mvn){\rm Prob}(S_n=m)=f(m-v n), with the wave profile f(z)f(z) unusually decaying as a double exponential for large positive and negative zz. In addition, as the only parameter in the game is varied, we find a transition where one player is able to get his maximum theoretical score. By extending this model, we suggest that the front velocity vv is selected by the nonlinear marginal stability mechanism arising in some traveling wave problems for which the profile decays exponentially, and for which standard traveling wave theory applies

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019