52 research outputs found

    Effects of Trade Cost on the Textile and Apparel Market: Evidence from Asian Countries

    Get PDF
    Global textile and apparel industry has since the 1950s been subjected to various forms of trade policy measures. Well noted among these are tariffs and non-tariff barriers (NTB)/policy indicators. Understanding the dynamics in such relevant policy indicators and the implications they yield for trade is a vital step toward informing relevant policy formulation and agribusiness investment decisions. With the textile and apparel industry being the primary grounds on which development in most Asian countries is founded, we for the first time in literature assess effects of various trade cost indicators on global textile and apparel imports from 37 Asian countries using a ‘cost-incorporated’ gravity model for the period 1988–2004. Estimates from this study affirm theory-based associations between trade, distance, cultural linkage, tariffs, and non-tariffs barriers. We however discovered quite interesting associations regarding effects of tariff increments and existence of NTB. Although both are primarily imposed/instilled to restrict trade flow, effect of tariff increments was consistently negative across all models, but that for NTB was consistently positive, although significant only in the case of apparel imports. Plausible reasons behind the implications for tariffs and NTB are elaborated on in this article. A keen discovery from this study, however, is that imports of apparels are more responsive than textile imports to dynamics in various trade-related cost, geographic and economic indicators

    SOON: A TOOL FOR SOFTWARE PERFORMANCE VALIDATION

    No full text

    Model-based Interface Specification for Systems Integration in Systems of Systems Engineering

    No full text
    The key to enable systems integration is that systems inter-communications are accurately and unambiguously specified. In line with ongoing Model-based Systems Engineering (MBSE) initiatives aiming to support systems engineering activities by means of formal and graphical models, we have introduced a logical model for the definition of Interface Communication Modelling Language (ICML), to enable a model-based approach for interface specification. ICML is based on UML and can potentially be integrated with other systems models in similar forms, e.g., SySML, and with systems of systems models in UPDM or related frameworks. We have designed ICML basing on a preliminary domain analysis on radio signal specifications, with application to space systems. In the analysis, we have specifically considered simple digital and unidirectional signals, and subsequently we have included a method to use ICML for Time-Division Multiplexed signals. We also present an excerpt of the ICML metamodel and a simple example application

    A Model-based Signal-In-Space Interface Specification to Support the Design of Galileo Receivers

    No full text
    The design and development of Galileo receivers will be a key factor to determine the market approach and penetration. The massive use of the Galileo services will be impacted, as well as the estimated economical return of the Galileo linked activities. In general, GNSS receivers use similar mathematical models for the computation of the global positioning from a standard parameter set. However, receivers design and implementation solutions are often inherently dependent on the specific parameter representations defined in the Signal-In-Space (SIS) interface specifications. In this paper, we introduce Interface Communication Modeling Language (ICML) as a model-based approach for the SIS interface specification to support the engineering of Galileo receivers. We argue that a model-based specification can potentially bring several technical benefits to the design of Galileo receivers, including support for specification communication among stakeholders, reuse and adaptation of existing GPS software and chipsets, and receiver-side multi GNSS interoperability, for example. As a result, a model-based SIS interface specification can contribute to increase the use of the Galileo services by reducing the impact of the technical factors leading to the extra costs. In the paper, we present the overall layout of the ICML language and preliminary applications. In particular, we present a simplified excerpt of a Galileo-like SIS specification and functional schema of GNSS receivers and show how the ICML-based specification can support the design of Galileo receivers. An important caveat: no endorsement is made for the use of the ICML language for the official Galileo SIS interface specification

    Are rotational DoFs essential in substructure decoupling?

    No full text
    Substructure decoupling consists in the identification of the dynamic behavior of a structural subsystem, starting from the known dynamic behavior of both the coupled system and the remaining part of the structural system(residual subsystem). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. Compatibility and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal DoFs of the residual subsystem (extended interface), or at some coupling DoFs and/or some internal DoFs of the residual subsystem (mixed interface). Using a mixed interface, rotational coupling DoFs could be eliminated and substituted by internal translational DoFs. This would avoid difficult measurements of rotational FRFs. This possibility is verified in this paper using simulated experimental data

    Substructuring using NNMs of nonlinear connecting elements

    No full text
    The behaviour of real systems is in general significantly difficult to achieve due to their implicit nonlinear nature. For ordinary studies, they are assumed to behave linearly obtaining rough information regarding their main features. However, in most cases this is not enough to properly design them, thus the introduction of some nonlinearities becomes necessary. In most cases, real structures can be modeled as linear substructures jointed through nonlinear connections to evaluate how the nonlinearities affect the global system. The connecting element is modeled as an additional substructure to be included in the substructuring process. Substructuring methods are here used together with Nonlinear Normal Modes (NNMs) theory to achieve the behaviour of these types of systems. The nonlinearities, even if localised in a small portion of the system, play a crucial role and their effects on the dynamics of the whole system are different whether the connection has a softening or hardening behaviuor. Two cases involving lumped parameters systems are analysed, showing that the method can be applied considering both hardening and softening nonlinear laws and it provides reliable results
    • 

    corecore