34 research outputs found

    Feeding synthetic zeolite to transition dairy cows alters neutrophil gene expression.

    Get PDF
    Synthetic zeolites are used to control the availability of dietary minerals (e.g., Ca, Mg, and P) in dairy cows. Due to calcium demand increasing with lactation onset, most cows become hypocalcemic immediately postpartum, which likely contributes to poorer immune function because calcium is important for immune cell signaling. To overcome postpartum hypocalcemia, we fed transition cows synthetic zeolite A (sodium aluminosilicate) precalving and hypothesized that it would alter calcium and thus neutrophil function during the transition period. Multiparous Holstein-Friesian cows in late gestation were randomly allocated to an untreated control group (n = 10) or a treatment group in which each cow received 500 g of zeolite A daily (n = 10) for 14 d prior to the expected calving date (actual duration = 17 ± 3 d prepartum). The cows grazed pasture, and each was supplemented with 2 kg/d of maize silage (dry matter basis), with or without zeolite, until calving. Blood samples for neutrophil isolation and analysis of plasma indicators of mineral status, energy status, liver function, and inflammation were collected pretreatment (covariate; d -19); on d -14 and -7 precalving; on the day of calving (d 0); and on d 1, 4, 7, and 28 postcalving. Neutrophils were isolated and gene expression was analyzed using microfluidic gene expression arrays. Neutrophil respiratory burst was assessed using stimulation with phorbol 12-myristate 13-acetate and flow cytometry. Plasma calcium and phosphorus revealed a treatment by time interaction; cows offered zeolite had greater plasma calcium concentrations at d 0, 1, and 4 postcalving and plasma phosphorus concentrations were lower in zeolite-treated cows during the precalving period until d 1 postcalving compared with control animals. Zeolite treatment downregulated neutrophil gene expression of CXCR4 and S100A8 and tended to lower gene expression for other immune mediators (CXCR1, IFNG, S100A12, and S100A9) compared with the control. Zeolite treatment did not affect neutrophil respiratory burst or expression of the other genes investigated. Plasma concentrations of cytokine IL-6 were reduced with zeolite treatment, which was most evident immediately postcalving (d 0, 1, and 7). Overall, feeding zeolite precalving had few effects on neutrophil gene expression and function; however, the lower gene expression of neutrophil inflammatory mediators may be due to altered availability of dietary minerals prepartum and indicates that zeolite A may control inflammation during the transition period

    Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows

    Get PDF
    The common practice of increasing dietary energy density during the close-up dry period (last ∼3 wk prepartum) has been recently associated with a higher incidence of metabolic disorders after calving. Despite these reports, over-feeding of metabolizable energy (ME) during the far-off, nonlactating period is a common management policy aimed at achieving optimum calving body condition score (BCS) in pasture-based systems, as cows are generally thinner than total mixed ration cows at the end of lactation. Our hypothesis was that both far-off and close-up overfeeding influence the peripartum adipose tissue changes associated with energy balance and inflammatory state. Sixty mid-lactation, grazing dairy cows of mixed age and breed were randomly allocated to 1 of 2 groups that were managed through late lactation to achieve a low and high BCS (approximately 4.25 and 5.0 on a 10-point scale) at dry-off. The low BCS cows were then overfed ME to ensure that they achieved the same BCS as the higher BCS group by calving. Within each rate of BCS gain treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement of treatments (i.e., 10 cows/treatment). Subcutaneous adipose tissue was collected via biopsy at −1, 1, and 4 wk relative to parturition. Quantitative PCR was used to measure mRNA and microRNA expression of targets related to adipogenesis and inflammation. Cows overfed in the far-off period had increased expression of miR-143 and miR-378 prepartum (−1 wk) indicating greater adipogenesis, consistent with their rapid gain in BCS following dry-off. Furthermore, the lower postpartum expression of IL6, TNF, TLR4, TLR9, and miR-145, and a higher abundance of miR-99a indicated lower body fat mobilization in early lactation in the same group. In the close-up period, feeding either 65 or 120% of ME requirements caused changes in FASN, IL1B, IL6R, TLR9, and the microRNA miR-143, miR-155, and miR-378. Their respective expression patterns indicate a tentative negative-feedback mechanism in metabolically compromised, feed-restricted cows, and a possible immune-related stimulation of lipolysis in apparently static adipocytes in overfed cows. Data from cows fed 90% of ME requirements indicate the existence of a balance between lipolytic (inflammatory-related) and anti-lipolytic signals, to prime the mobilization machinery in light of imminent lactation. Overall, results indicate that far-off dry cow nutrition influences peripartum adipose tissue metabolism, with neither strategy negatively affecting the physiological adaptation to lactation. Furthermore, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutritional management

    Efficiency of use of metabolizable energy for body weight gain in pasture-based, nonlactating dairy cows

    No full text
    Four cohorts of nonlactating, pregnant dairy cows (n=50, 47, 45, and 42) were individually fed indoors to determine the amount of feed required for body weight (BW) gain from autumn pasture and commonly used supplementary feeds. These results were used to estimate the apparent efficiency with which metabolizable energy (ME) is used for BW gain (app_kg). Control cows were offered autumn pasture to estimated maintenance requirements (~0.55MJ of ME/kg of BW·⁷⁵ ), with an additional 20 MJ of ME/d allocated for pregnancy and activity. All other cows received the same allowance of autumn pasture and an additional allowance (2.5 or 5.0 kg of dry matter/d) of autumn pasture (Past), spring pasture silage (Psil), maize silage (Msil), cracked maize grain (Mgr), or palm kernel expeller (PKE), resulting in a total of 11 treatments. Individual cow dry matter intake was determined daily; BW was recorded once per week for cohorts 1 and 2, and 3 times per week for cohorts 3 and 4. The ME contents of feeds were estimated from feed quality assays. Regression analyses were used on each feed to determine the ME requirement for 1kg of BW gain. The app_kg of Past and Msil was 0.34 and 0.47, respectively; these estimates are in line with published literature. The app_kg of Psil (0.50) was consistent with the published kg for spring pasture, from which the silage was made. Palm kernel expeller had the greatest app_kg (0.61). The reasons for this cannot be deduced from the current study but may reflect the relatively high fat content of the feed and the high kg of fat. The app_kg for Mgr was low (0.38) in comparison with the other supplementary feeds and, in particular, relative to its feed ME and published kg estimates. Although the reason for the low app_kg cannot be deduced from the current data, the most plausible reason is the preferential use of propionate-derived glucose for conceptus metabolism rather than BW gain, a factor not accounted for in previous experimental models that did not use late-gestation cows. In summary, the app_kg for autumn pasture was low but consistent with historical growth rate trials in other ruminant species. In comparison, Msil, Psil, and PKE were used with a greater apparent efficiency (app_kg=0.47 to 0.61), but Mgr resulted in a relatively low rate of gain per MJ of ME (app_kg=0.38). These differences have implications for accurate feed budgeting on farm

    Hepatic one-carbon metabolism enzyme activities and intermediate metabolites are altered by prepartum body condition score and plane of nutrition in grazing Holstein dairy cows

    No full text
    Precalving feeding level and body condition score (BCS) alter postcalving energy balance and oxidant status of dairy cows. We hypothesized that the reported benefits of a controlled restriction precalving depend on precalving BCS. The objective was to identify alterations in activity and intermediates of the hepatic one-carbon metabolism, transsulfuration, and tricarboxylic acid pathways. Twenty-eight pregnant and nonlactating grazing dairy cows of mixed age and breed (Friesian, Friesian × Jersey) were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial design: 2 prepartum BCS categories [4.0 (thin, BCS4) and 5.0 (optimal, BCS5); 10-point scale], by managing cows in late lactation to achieve the 2 groups at dry-off, and 2 levels of energy intake during the 3 wk preceding calving (75 or 125% of estimated requirements), obtained via allowance (m/cow) of fresh pasture composed of mostly perennial ryegrass and white cover. Average (± standard deviation) age was 6 ± 2, 6 ± 3, 5 ± 1, and 7 ± 3 yr for BCS4 fed 75 and 125%, and BCS5 fed 75 and 125%, respectively. Breed distribution (average ± standard deviation) for the 4 groups was 79 ± 21, 92 ± 11, 87 ± 31, and 74 ± 23% Friesian, and 17 ± 20, 8 ± 11, 13 ± 31, and 25 ± 23% Jersey. Liver tissue was collected by biopsy at −7, 7, and 28 d relative to calving. Tissue was used for C radio-labeling assays to measure betaine-homocysteine S-methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and cystathionine-β-synthase (CBS) activity. Liver metabolomics was undertaken using a targeted liquid chromatography with tandem mass spectrometry-based profiling approach. After initial liquid chromatography separation, mass spectra were acquired under both positive and negative ionization, whereas multiple reaction monitoring was used to measure target compound signal response (peak area count). Enzyme activity and metabolite peak area count were normalized with the homogenate protein concentration. Repeated measures analysis of variance via PROC MIXED in SAS (SAS Institute Inc., Cary, NC), with BCS, feeding, and time as fixed effects, and cow as random effect was used. All enzyme activities were affected by time, with betaine-homocysteine S-methyltransferase activity peaking at 7 d, whereas CBS and MTR activity decreased postpartum. Overall, thin cows had greater MTR activity, whereas cows fed 125% requirements had greater CBS activity. An interaction was detected between BCS and feeding for CBS activity, as thin cows fed 125% of requirements had greater overall activity. Compared with liver from BCS4 cows, BCS5 cows had overall greater betaine, glycine, butyrobetaine/acetylcholine, serine, and taurine concentrations. The same metabolites, plus choline and N-N-dimethylglycine, were overall greater in liver of cows fed 75% compared with those fed 125% of requirements. An interaction of BCS and feeding level was detected for the aforementioned metabolites plus methionine, cystathionine, cysteinesulfinate, and hypotaurine, due to greater overall concentrations in BCS5 cows fed 75% of requirements compared with other groups. Overall, differences in hepatic enzyme activity and intermediate metabolites suggest that both BCS and feeding level can alter the internal antioxidant system (e.g., glutathione and taurine) throughout the periparturient period. Further studies are needed to better understand potential mechanisms involved

    Strategies to gain body condition score in pasture-based dairy cows during late lactation and the far-off nonlactating period and their interaction with close-up dry matter intake

    No full text
    In pasture-based systems, cows are generally thinner at the end of lactation than cows fed total mixed rations and, as a result, over-feeding of metabolizable energy (ME) during the far-off nonlactating period is a standard management policy to achieve optimum calving body condition score (BCS). An alternative would be to manage cows to gain BCS through late lactation, such that cows ended lactation close to optimum calving BCS and maintenance of BCS through to calving. We sought to quantify the effect of moderate or excessive ME intakes during the far-off nonlactating period in cows that had been managed to gain or maintain BCS through late lactation and whether the far-off management strategy interacted with close-up level of feeding. Effects on milk production and circulating indicators of energy balance and metabolic health in early lactation were evaluated. A herd of 150 cows was randomly assigned to 1 of 2 feeding levels in late lactation to achieve a low and high BCS at the time of dry-off (approximately 4.25 and 5.0 on a 10-point scale). Following dry-off, both herds were managed to achieve a BCS of 5.0 one month before calving; this involved controlled feeding (i.e., maintenance) and over-feeding of ME during the far-off dry period. Within each far-off feeding-level treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement (i.e., 25 cows/treatment). Body weight and BCS were measured weekly before and after calving, and milk production was measured weekly until wk 7 postcalving. Blood samples were collected weekly for 4 wk pre-calving and 5 wk postcalving, and on d 0, 1, 2, 3, and 4 relative to calving, and analyzed for indicators of energy balance (e.g., blood fatty acids, β-hydroxybutyrate), calcium status, and inflammatory state. No interaction was observed between far-off and close-up feeding levels. Over-feeding of ME to low BCS cows during the far-off nonlactating period reduced blood fatty acid and β-hydroxybutyrate concentrations in early lactation, and increased blood albumin to globulin ratio compared with cows that were dried off close to recommended calving BCS and control-fed during the far-off dry period. Cows consuming 65% of their ME requirements during the close-up period had lower fatty acids and β-hydroxybutyrate in early lactation, but produced less milk, particularly during the first 21 d of lactation, had more than 3-fold greater concentration of haptoglobin immediately postcalving, and had a lower blood cholesterol concentration and albumin to globulin ratio, when compared with cows offered 90 or 120% of their ME requirements. Collectively, these measurements indicate that a severe restriction

    Ferdinando e Giuseppe Galli Bibiena, Angelica vincitrice di Alcina, 1716 (cat. 22a-d)

    No full text
    Precalving feeding level alters postcalving energy balance, dry matter intake, the liver and adipose tissue transcriptome, hepatic lipidosis, and the risk of metabolic diseases in both high-production cows consuming total mixed rations and moderate-production cows grazing pasture. We hypothesized that the reported benefits of a controlled restriction before calving are dependent on precalving body condition score (BCS): low BCS animals would not benefit from reduced feeding levels precalving, but high BCS cows would have metabolic and immunomodulatory profiles indicative of an improved health status. One hundred sixty-one days before calving, 150 cows were allocated randomly to 1 of 6 treatment groups (n. =. 25) in a 2. ×. 3 factorial arrangement: 2 precalving BCS categories (4.0 and 5.0; based on a 10-point scale: BCS4 and BCS5, respectively) and 3 levels of energy intake during the 3 wk preceding calving (75, 100, and 125% of estimated requirements). Cows in the BCS4 and BCS5 groups were managed through late lactation to ensure that target calving BCS was achieved at dry off. Cows were then fed to maintain this BCS target until 3 wk before expected calving date, at which point they were managed within their allotted precalving energy intake treatments by offering different allowances of fresh pasture/cow per day. Milk production, body weight, and BCS were measured weekly; blood was sampled weekly before and after calving and on d 0, 1, 2, 3, and 4 relative to calving. Aspirated plasma was assayed for nonesterified fatty acids, β-hydroxybutyrate, total protein, albumin, cholesterol, haptoglobin, IL-1β, IL-6, total antioxidant capacity, and reactive oxygen species. Liver was sampled wk 1, 2, and 4 postcalving for triacylglycerol analysis. Results confirm that precalving BCS and precalving feeding level have both independent and interdependent effects on production and health characteristics of transition dairy cows. Irrespective of precalving BCS, a controlled restriction precalving reduced the net release of nonesterified fatty acids from adipose tissue postpartum and increased plasma calcium concentrations, reducing the risk of milk fever. Fatter cows produced more milk but lost more BCS postcalving and had greater blood β-hydroxybutyrate concentrations and increased hepatic lipidosis. In comparison, after calving, indicators of reduced immune competence were accentuated in BCS4 cows subjected to a feed restriction before calving, probably increasing the risk of infectious diseases. It would appear from these results that optimally conditioned cows will benefit from a short-term (2-3 wk) controlled feed restriction (75-90% of requirements), whereas cows in less than optimal condition should be fed to requirements before calving.</p

    Effects of far-off and close-up transition cow feeding on uterine health, postpartum anestrous interval, and reproductive outcomes in pasture-based dairy cows

    No full text
    Background: In seasonal, pasture-based, dairy production systems, cows must recover from calving and become pregnant within two to 3 months. To achieve this, the uterus must involute and ovulation must occur and continue at regular intervals. As these processes are affected by the cows' nutritional or metabolic status post-calving, the objective of this study was to evaluate the effect of cow feeding strategies on uterine health, the length of postpartum anestrous interval, and reproductive outcomes. The treatments consisted of two feeding strategies during late-lactation and early dry period (far-off period; starting 4-month pre-calving) and three close-up dry period feeding regimes (1-month pre-calving) in a 2 × 3 factorial arrangement. We randomly assigned 150 cows to one of two far-off treatments. During late lactation, the herds (n = 75 cows per herd) were either control-fed (Controlfed) or over-fed (Overfed) to achieve a low or high body condition score (4-month pre-calving; BCS; ~ 4.25 and ~ 4.75; 10-point scale) at cessation of lactation. Within each of these treatments, three feeding levels were applied during the close-up period (1-month pre-calving): ~ 65% (Feed65), ~ 90% (Feed90), or ~ 120% (Feed120) of metabolizable energy (ME) intakes relative to pre-calving requirements. Results: Uterine health improved (i.e. polymorphonucleated (PMN) cells declined) with increased feeding during the close-up period for cows in the Overfed group. The reverse was evident for the Controlfed group with the greatest PMN at the highest intakes during the close-up period. The postpartum anoestrous interval (PPAI) was shorter in cows from the Overfed group when moderately fed (Feed90) during the close-up period; in comparison, the PPAI was shorter in the Controlfed group, when those cows were overfed in the close-up period (Feed120). The cows in the Overfed treatment had greater conception and pregnancy rates if cows had moderate dry matter intakes (Feed90) during the close-up period; these reproductive variables were less under excessive feed intakes (Feed120); yet, close-up dry matter intake had little effect on conception and pregnancy rates for the Controlfed group. Conclusions: The far-off feeding strategies increased early reproductive outcomes at 3 weeks of mating. Additionally, the interaction between far-off and close-up feeding strategies resulted in high six-week pregnancy rate with a slight restriction during the close-up period but only in the far-off Overfed group. Thus, our hypothesis is supported under these conditions.</p

    Fertility and the transition dairy cow

    No full text
    The transition from pregnancy to lactation (i.e. the transition period) is a time of significant metabolic challenge, with a several-fold increase in a cow's requirement for energy, protein and minerals within days of calving. A successful transition involves the initiation and coordination of changes in multiple tissues that facilitate the provision of these nutrients to the cow and, more specifically, to the mammary gland, often at the considerable expense of other tissues. Failure to coordinate the necessary changes effectively results in transition period maladaptation, which can broadly be grouped into three categories: (1) negative energy balance and metabolic diseases associated with energy metabolism; (2) immune dysfunction and inflammation; and (3) metabolic diseases associated with mineral deficiency. Because reinitiation of ovarian activity, follicle recruitment, ovulation, fertilisation and, potentially, even maternal recognition of pregnancy and implantation occur against the backdrop of this metabolic and immunological disturbance in early lactation, the role of nutrition in ensuring a smooth transition between the pregnant and lactating state is important. In this paper we integrate recent research findings with previous knowledge of the interaction between transition cow metabolism and nutrition and reproductive outcomes, and offer new insights into key elements of successful cow management to avoid transition 'maladaptation' and improve pregnancy rates.</p

    Corrigendum to “Parturition in dairy cows temporarily alters the expression of genes in circulating neutrophils” (J. Dairy Sci. 99:6470–6483)(S002203021630265X)(10.3168/jds.2015-10877)

    No full text
    In Table 3 (page 6478), the means and standard errors of the difference (SED) for 9 of the parameters were tabulated as log values, rather than in the original units. All P-values and Tukey comparisons are correct. The corrected table is shown below, with corrected parameters and values in bold. The authors regret the errors
    corecore