8 research outputs found

    Non-Linear Population Firing Rates and Voltage Sensitive Dye Signals in Visual Areas 17 and 18 to Short Duration Stimuli

    Get PDF
    Visual stimuli of short duration seem to persist longer after the stimulus offset than stimuli of longer duration. This visual persistence must have a physiological explanation. In ferrets exposed to stimuli of different durations we measured the relative changes in the membrane potentials with a voltage sensitive dye and the action potentials of populations of neurons in the upper layers of areas 17 and 18. For durations less than 100 ms, the timing and amplitude of the firing and membrane potentials showed several non-linear effects. The ON response became truncated, the OFF response progressively reduced, and the timing of the OFF responses progressively delayed the shorter the stimulus duration. The offset of the stimulus elicited a sudden and strong negativity in the time derivative of the dye signal. All these non-linearities could be explained by the stimulus offset inducing a sudden inhibition in layers II–III as indicated by the strongly negative time derivative of the dye signal. Despite the non-linear behavior of the layer II–III neurons the sum of the action potentials, integrated from the peak of the ON response to the peak of the OFF response, was almost linearly related to the stimulus duration

    Visual synchrony affects binding and segmentation in perception

    No full text
    The visual system analyses information by decomposing complex objects into simple components (visual features) that are widely distributed across the cortex. When several objects are present simultaneously in the visual field, a mechanism is required to group (bind) together visual features that belong to each object and to separate (segment) them from features of other objects. An attractive scheme for binding visual features into a coherent percept consists of synchronizing the activity of their neural representations. If synchrony is important in binding, one would expect that binding and segmentation are facilitated by visual displays that are temporally manipulated to induce stimulus-dependent synchrony. Here we show that visual grouping is indeed facilitated when elements of one percept are presented at the same time as each other and are temporally separated (on a scale below the integration time of the visual system) from elements of another percept or from background elements. Our results indicate that binding is due to a global mechanism of grouping caused by synchronous neural activation, and not to a local mechanism of motion computation
    corecore